Room-Temperature Ultraviolet Nanowire Nanolasers

Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2001-06, Vol.292 (5523), p.1897-1899
Hauptverfasser: Huang, Michael H., Mao, Samuel, Feick, Henning, Yan, Haoquan, Wu, Yiying, Kind, Hannes, Weber, Eicke, Russo, Richard, Yang, Peidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1899
container_issue 5523
container_start_page 1897
container_title Science (American Association for the Advancement of Science)
container_volume 292
creator Huang, Michael H.
Mao, Samuel
Feick, Henning
Yan, Haoquan
Wu, Yiying
Kind, Hannes
Weber, Eicke
Russo, Richard
Yang, Peidong
description Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources. These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis.
doi_str_mv 10.1126/science.1060367
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_743419481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A75819654</galeid><jstor_id>3083931</jstor_id><sourcerecordid>A75819654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c837t-ad7cac28975932610866c63dc8748f1a2833bd89ab753f795204b51f4d1e988e3</originalsourceid><addsrcrecordid>eNqN0lFv0zAQB_AIgVgZPPOC0EAIeFg2O05i-3FUUCZVqwQbr5brXEoqJy62s8G356pEQFE1VYmU6PzLWb78k-Q5JWeUZuV5MA10Bs4oKQkr-YNkQoksUpkR9jCZEKylgvDiKHkSwpoQXJPscXJEKZNc5nSSkC_Otek1tBvwOvYeTm5s9Pq2cRbiyZXu3F2Dxe2L1QF8eJo8qrUN8Gx8Hic3nz5eTz-n88XscnoxT41gPKa64kabTEiOO2YlJaIsTckqI3guaqozwdiyElIvecFqLouM5MuC1nlFQQoB7Dh5NfR1ITYKzxnBfDeu68BExSXDG827wWy8-9FDiKptggFrdQeuD4rnLKcyFxTl2_slkUQOLe-HWSlZmbMC4ev_4Nr1vsORqIyyQtCcb7udDmilLaimqx3O1qygw2Fb10HdYPmCo5ZlkSNP93C8Kmgbs8-_3_FIIvyMK92HoC6_Xh1MF98Oph9mh1Ixm-_Q033UOGthBQqzM13s8POBG-9C8FCrjW9a7X8pStQ2-mqMvhqjj1-8HH9Iv2yh-uvHrCN4MwIdjLa1151pwj99GadcIHsxsHWIzv9ZZkQwySj7Da7pDpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213581473</pqid></control><display><type>article</type><title>Room-Temperature Ultraviolet Nanowire Nanolasers</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Huang, Michael H. ; Mao, Samuel ; Feick, Henning ; Yan, Haoquan ; Wu, Yiying ; Kind, Hannes ; Weber, Eicke ; Russo, Richard ; Yang, Peidong</creator><creatorcontrib>Huang, Michael H. ; Mao, Samuel ; Feick, Henning ; Yan, Haoquan ; Wu, Yiying ; Kind, Hannes ; Weber, Eicke ; Russo, Richard ; Yang, Peidong ; Ernest Orlando Lawrence Berkeley National Lab., CA (US)</creatorcontrib><description>Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources. These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 0193-4511</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1060367</identifier><identifier>PMID: 11397941</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>AMBIENT TEMPERATURE ; Climate ; Emission spectra ; ENGINEERING ; Exact sciences and technology ; Excitons ; Fundamental areas of phenomenology (including applications) ; Information Storage ; LASERS ; Lasing ; Light ; Luminescence ; MINIATURIZATION ; Nanotechnology ; Nanowires ; Optics ; Physics ; Pumps ; Room temperature ; Sapphire ; Semiconductor lasers; laser diodes ; Semiconductors ; Temperature ; Thin films ; ULTRAVIOLET RADIATION</subject><ispartof>Science (American Association for the Advancement of Science), 2001-06, Vol.292 (5523), p.1897-1899</ispartof><rights>Copyright 2001 American Association for the Advancement of Science</rights><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2001 American Association for the Advancement of Science</rights><rights>COPYRIGHT 2001 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Jun 8, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c837t-ad7cac28975932610866c63dc8748f1a2833bd89ab753f795204b51f4d1e988e3</citedby><cites>FETCH-LOGICAL-c837t-ad7cac28975932610866c63dc8748f1a2833bd89ab753f795204b51f4d1e988e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3083931$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3083931$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1037178$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11397941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/793793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Michael H.</creatorcontrib><creatorcontrib>Mao, Samuel</creatorcontrib><creatorcontrib>Feick, Henning</creatorcontrib><creatorcontrib>Yan, Haoquan</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><creatorcontrib>Kind, Hannes</creatorcontrib><creatorcontrib>Weber, Eicke</creatorcontrib><creatorcontrib>Russo, Richard</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Ernest Orlando Lawrence Berkeley National Lab., CA (US)</creatorcontrib><title>Room-Temperature Ultraviolet Nanowire Nanolasers</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources. These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis.</description><subject>AMBIENT TEMPERATURE</subject><subject>Climate</subject><subject>Emission spectra</subject><subject>ENGINEERING</subject><subject>Exact sciences and technology</subject><subject>Excitons</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Information Storage</subject><subject>LASERS</subject><subject>Lasing</subject><subject>Light</subject><subject>Luminescence</subject><subject>MINIATURIZATION</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optics</subject><subject>Physics</subject><subject>Pumps</subject><subject>Room temperature</subject><subject>Sapphire</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Semiconductors</subject><subject>Temperature</subject><subject>Thin films</subject><subject>ULTRAVIOLET RADIATION</subject><issn>0036-8075</issn><issn>0193-4511</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0lFv0zAQB_AIgVgZPPOC0EAIeFg2O05i-3FUUCZVqwQbr5brXEoqJy62s8G356pEQFE1VYmU6PzLWb78k-Q5JWeUZuV5MA10Bs4oKQkr-YNkQoksUpkR9jCZEKylgvDiKHkSwpoQXJPscXJEKZNc5nSSkC_Otek1tBvwOvYeTm5s9Pq2cRbiyZXu3F2Dxe2L1QF8eJo8qrUN8Gx8Hic3nz5eTz-n88XscnoxT41gPKa64kabTEiOO2YlJaIsTckqI3guaqozwdiyElIvecFqLouM5MuC1nlFQQoB7Dh5NfR1ITYKzxnBfDeu68BExSXDG827wWy8-9FDiKptggFrdQeuD4rnLKcyFxTl2_slkUQOLe-HWSlZmbMC4ev_4Nr1vsORqIyyQtCcb7udDmilLaimqx3O1qygw2Fb10HdYPmCo5ZlkSNP93C8Kmgbs8-_3_FIIvyMK92HoC6_Xh1MF98Oph9mh1Ixm-_Q033UOGthBQqzM13s8POBG-9C8FCrjW9a7X8pStQ2-mqMvhqjj1-8HH9Iv2yh-uvHrCN4MwIdjLa1151pwj99GadcIHsxsHWIzv9ZZkQwySj7Da7pDpA</recordid><startdate>20010608</startdate><enddate>20010608</enddate><creator>Huang, Michael H.</creator><creator>Mao, Samuel</creator><creator>Feick, Henning</creator><creator>Yan, Haoquan</creator><creator>Wu, Yiying</creator><creator>Kind, Hannes</creator><creator>Weber, Eicke</creator><creator>Russo, Richard</creator><creator>Yang, Peidong</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20010608</creationdate><title>Room-Temperature Ultraviolet Nanowire Nanolasers</title><author>Huang, Michael H. ; Mao, Samuel ; Feick, Henning ; Yan, Haoquan ; Wu, Yiying ; Kind, Hannes ; Weber, Eicke ; Russo, Richard ; Yang, Peidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c837t-ad7cac28975932610866c63dc8748f1a2833bd89ab753f795204b51f4d1e988e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>AMBIENT TEMPERATURE</topic><topic>Climate</topic><topic>Emission spectra</topic><topic>ENGINEERING</topic><topic>Exact sciences and technology</topic><topic>Excitons</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Information Storage</topic><topic>LASERS</topic><topic>Lasing</topic><topic>Light</topic><topic>Luminescence</topic><topic>MINIATURIZATION</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optics</topic><topic>Physics</topic><topic>Pumps</topic><topic>Room temperature</topic><topic>Sapphire</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Semiconductors</topic><topic>Temperature</topic><topic>Thin films</topic><topic>ULTRAVIOLET RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Michael H.</creatorcontrib><creatorcontrib>Mao, Samuel</creatorcontrib><creatorcontrib>Feick, Henning</creatorcontrib><creatorcontrib>Yan, Haoquan</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><creatorcontrib>Kind, Hannes</creatorcontrib><creatorcontrib>Weber, Eicke</creatorcontrib><creatorcontrib>Russo, Richard</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Ernest Orlando Lawrence Berkeley National Lab., CA (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database (ProQuest)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Michael H.</au><au>Mao, Samuel</au><au>Feick, Henning</au><au>Yan, Haoquan</au><au>Wu, Yiying</au><au>Kind, Hannes</au><au>Weber, Eicke</au><au>Russo, Richard</au><au>Yang, Peidong</au><aucorp>Ernest Orlando Lawrence Berkeley National Lab., CA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-Temperature Ultraviolet Nanowire Nanolasers</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2001-06-08</date><risdate>2001</risdate><volume>292</volume><issue>5523</issue><spage>1897</spage><epage>1899</epage><pages>1897-1899</pages><issn>0036-8075</issn><issn>0193-4511</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources. These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>11397941</pmid><doi>10.1126/science.1060367</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2001-06, Vol.292 (5523), p.1897-1899
issn 0036-8075
0193-4511
1095-9203
language eng
recordid cdi_proquest_miscellaneous_743419481
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects AMBIENT TEMPERATURE
Climate
Emission spectra
ENGINEERING
Exact sciences and technology
Excitons
Fundamental areas of phenomenology (including applications)
Information Storage
LASERS
Lasing
Light
Luminescence
MINIATURIZATION
Nanotechnology
Nanowires
Optics
Physics
Pumps
Room temperature
Sapphire
Semiconductor lasers
laser diodes
Semiconductors
Temperature
Thin films
ULTRAVIOLET RADIATION
title Room-Temperature Ultraviolet Nanowire Nanolasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-Temperature%20Ultraviolet%20Nanowire%20Nanolasers&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Huang,%20Michael%20H.&rft.aucorp=Ernest%20Orlando%20Lawrence%20Berkeley%20National%20Lab.,%20CA%20(US)&rft.date=2001-06-08&rft.volume=292&rft.issue=5523&rft.spage=1897&rft.epage=1899&rft.pages=1897-1899&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1060367&rft_dat=%3Cgale_osti_%3EA75819654%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213581473&rft_id=info:pmid/11397941&rft_galeid=A75819654&rft_jstor_id=3083931&rfr_iscdi=true