Powering an Inorganic Nanodevice with a Biomolecular Motor
Biomolecular motors such as F1-adenosine triphosphate synthase (F1-ATPase) and myosin are similar in size, and they generate forces compatible with currently producible nanoengineered structures. We have engineered individual biomolecular motors and nanoscale inorganic systems, and we describe their...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2000-11, Vol.290 (5496), p.1555-1558 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biomolecular motors such as F1-adenosine triphosphate synthase (F1-ATPase) and myosin are similar in size, and they generate forces compatible with currently producible nanoengineered structures. We have engineered individual biomolecular motors and nanoscale inorganic systems, and we describe their integration in a hybrid nanomechanical device powered by a biomolecular motor. The device consisted of three components: an engineered substrate, an F1-ATPase biomolecular motor, and fabricated nanopropellers. Rotation of the nanopropeller was initiated with 2 mM adenosine triphosphate and inhibited by sodium azide. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.290.5496.1555 |