Optimizing Gaze Control in Three Dimensions

Horizontal and vertical movements of the human eye bring new objects to the center of the visual field, but torsional movements rotate the visual world about its center. Ocular torsion stays near zero during head-fixed gaze shifts, and eye movements to visual targets are thought to be driven by pure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1998-08, Vol.281 (5381), p.1363-1366
Hauptverfasser: Tweed, Douglas, Haslwanter, Thomas, Fetter, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Horizontal and vertical movements of the human eye bring new objects to the center of the visual field, but torsional movements rotate the visual world about its center. Ocular torsion stays near zero during head-fixed gaze shifts, and eye movements to visual targets are thought to be driven by purely horizontal and vertical commands. Here, analysis of eye-head gaze shifts revealed that gaze commands were three-dimensional, with a separate neural control system for torsion. Active torsion optimized gaze control as no two-dimensional system could have, stabilizing the retinal image as quickly as possible when it would otherwise have spun around the fixation point.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.281.5381.1363