Pseudonormality and a Lagrange multiplier theory for constrained optimization

We consider optimization problems with equality, inequality, and abstract set constraints, and we explore various characteristics of the constraint set that imply the existence of Lagrange multipliers. We prove a generalized version of the Fritz-John theorem, and we introduce new and general conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2002-08, Vol.114 (2), p.287-343
Hauptverfasser: BERTSEKAS, D. P, OZDAGLAR, A. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider optimization problems with equality, inequality, and abstract set constraints, and we explore various characteristics of the constraint set that imply the existence of Lagrange multipliers. We prove a generalized version of the Fritz-John theorem, and we introduce new and general conditions that extend and unify the major constraint qualifications. Among these conditions, two new properties, pseudonormality and quasinormality, emerge as central within the taxonomy of interesting constraint characteristics. In the case where there is no abstract set constraint, these properties provide the connecting link between the classical constraint qualifications and two distinct pathways to the existence of Lagrange multipliers: one involving the notion of quasiregularity and the Farkas lemma, and the other involving the use of exact penalty functions. The second pathway also applies in the general case where there is an abstract set constraint.
ISSN:0022-3239
1573-2878
DOI:10.1023/A:1016083601322