Perinuclear localization of chromatin facilitates transcriptional silencing

Transcriptional silencing in Saccharomyces cerevisiae at the HM mating-type loci and telomeres occurs through the formation of a heterochromatin-like structure. HM silencing is regulated by cis-acting elements, termed silencers, and by trans-acting factors that bind to the silencers. These factors a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1998-08, Vol.394 (6693), p.592-595
Hauptverfasser: Sternglanz, Rolf, Andrulis, Erik D, Neiman, Aaron M, Zappulla, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcriptional silencing in Saccharomyces cerevisiae at the HM mating-type loci and telomeres occurs through the formation of a heterochromatin-like structure. HM silencing is regulated by cis-acting elements, termed silencers, and by trans-acting factors that bind to the silencers. These factors attract the four SIR (silent information regulator) proteins, three of which (SIR2-4) spread from the silencers to alter chromatin, hence silencing nearby genes. We show here that an HMR locus with a defective silencer can be silenced by anchoring the locus to the nuclear periphery. This was accomplished by fusing integral membrane proteins to the GAL4 DNA-binding domain and overproducing the hybrid proteins, causing them to accumulate in the endoplasmic reticulum and the nuclear membrane. We expressed the hybrid proteins in a strain carrying an HMR silencer with GAL4-binding sites (UASG) replacing silencer elements, causing the silencer to become anchored to the nuclear periphery and leading to silencing of a nearby reporter gene. This silencing required the hybrids of the GAL4 DNA-binding domain with membrane proteins, the UASG sites and the SIR proteins. Our results indicate that perinuclear localization helps to establish transcriptionally silent chromatin.
ISSN:0028-0836
1476-4687
DOI:10.1038/29100