Application of the Semi-Lagrangian Inherently Conserving and Efficient (SLICE) Transport Method to Divergent Flows on a C Grid

Local conservation with the Semi-Lagrangian Inherently Conserving and Efficient (SLICE) transport method with a new trajectory algorithm is studied. Validation results of 1D and 2D passive advection with this new algorithm, which converges twice as fast as the old one, on the Arakawa C grid of a mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2008-12, Vol.136 (12), p.4850-4866
Hauptverfasser: MAHIDJIBA, Ahmed, QADDOURI, Abdessamad, COTE, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Local conservation with the Semi-Lagrangian Inherently Conserving and Efficient (SLICE) transport method with a new trajectory algorithm is studied. Validation results of 1D and 2D passive advection with this new algorithm, which converges twice as fast as the old one, on the Arakawa C grid of a model in Cartesian coordinates are obtained. The effects of numerically computed divergence and trajectories on the results were also investigated. Random small-scale errors due to the divergence, especially with realistic winds, can be observed. The total mass is conserved, however, and is not affected since the results show clearly that SLICE ensures a perfect local conservation. This work represents the first step toward implementation of SLICE in the operational Canadian Global Environmental Multiscale (GEM) model. [PUBLICATION ABSTRACT]
ISSN:0027-0644
1520-0493
DOI:10.1175/2008MWR2307.1