Platform Motion Effects on Measurements of Turbulence and Air–Sea Exchange over the Open Ocean

Platform motion contaminates turbulence statistics measured in the surface layer over the ocean and therefore adds uncertainty to the understanding and parameterization of air–sea exchange. A modification to the platform motion–correction procedure of Edson et al. is presented that explicitly accoun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2008-09, Vol.25 (9), p.1683-1694
Hauptverfasser: Miller, Scott D, Hristov, Tihomir S, Edson, James B, Friehe, Carl A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platform motion contaminates turbulence statistics measured in the surface layer over the ocean and therefore adds uncertainty to the understanding and parameterization of air–sea exchange. A modification to the platform motion–correction procedure of Edson et al. is presented that explicitly accounts for misalignment between anemometers and motion sensors. The method is applied to a high-resolution dataset, including four levels of turbulence within 20 m of the ocean surface, measured over deep ocean waves using the stable research platform R/P FLIP. The average error magnitude of the air–sea momentum flux (wind stress) from the four sensors during a 6-day period (10-m wind speed 2–14 m s−1) was 15% ± 1%, and varied systematically with measurement height. Motion and sensor-mounting offsets caused wind stress to be underestimated by 15% at 18.1 m, 13% at 13.8 m, and 11% at 8.7 m, and to be overestimated by 3% at 3.5 m. Sensor misalignment contributed to one-third of the correction to the wind stress. The motion correction reduced some measured artifacts in the wind that could otherwise be interpreted in terms of air–sea interaction, such as the angle between wind and wind stress vectors, while other features remained in the corrected wind, such as apparent upward momentum transfer from ocean to the atmosphere during low wind. These results demonstrate the complex interaction between motion and wind turbulence, and reinforce the necessity to measure and correct for platform motion. Finally, it is shown that the effects of motion on wind stress measured using R/P FLIP are much smaller than in situ measurements made using a conventional research ship.
ISSN:0739-0572
1520-0426
DOI:10.1175/2008JTECHO547.1