In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines
Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortaliz...
Gespeichert in:
Veröffentlicht in: | Biotechnology letters 2010-02, Vol.32 (2), p.195-202 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARγ2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARγ2-overexpressing BEFS cells (BEFS-PPARγ2) grown in ADCM with or without the PPARγ2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARγ2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARγ2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation. |
---|---|
ISSN: | 0141-5492 1573-6776 |
DOI: | 10.1007/s10529-009-0142-y |