Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies

We prove uniqueness of solutions to scalar conservation laws with space discontinuous fluxes. To do so, we introduce a partial adaptation of Kružkov's entropies which naturally takes into account the space dependency of the flux. The advantage of this approach is that the proof turns out to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-04, Vol.135 (2), p.253-265
Hauptverfasser: Audusse, Emmanuel, Perthame, Benoît
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove uniqueness of solutions to scalar conservation laws with space discontinuous fluxes. To do so, we introduce a partial adaptation of Kružkov's entropies which naturally takes into account the space dependency of the flux. The advantage of this approach is that the proof turns out to be a simple variant of the original method of Kružkov. In particular, we do not need traces, interface conditions, bounded variation assumptions (neither on the solution nor on the flux), or convex fluxes. However, we use a special ‘local uniform invertibility’ structure of the flux, which applies to cases where different interface conditions are known to yield different solutions
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210500003863