In situ monitoring of residual strain development during composite cure

Internal (residual) stresses build up in a thermosetting composite as the matrix shrinks during cure, and again as the composite is cooled to ambient from its elevated processing temperature. These stresses can be significant enough to distort the dimensions and shape of a cured part as well as init...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2002-06, Vol.23 (3), p.454-463
Hauptverfasser: Crasto, Allan S., Kim, Ran Y., Russell, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Internal (residual) stresses build up in a thermosetting composite as the matrix shrinks during cure, and again as the composite is cooled to ambient from its elevated processing temperature. These stresses can be significant enough to distort the dimensions and shape of a cured part as well as initiate damage in off‐axis plies, either during fabrication or under the application of relatively low mechanical loads. The magnitude of these stresses depends on a number of factors including constituent anisotropy, volume fraction and thermal expansion, ply orientation, process cycle, and matrix cure chemistry. In this study, embedded strain gauges were employed to follow, in situ, the buildup of residual strains in carbon fiber‐reinforced laminates during cure. The data were compared to those from volumetric dilatometer studies to ascertain the fraction of resin shrinkage that contributed to residual stress buildup during cure. Based on earlier studies with single‐fiber model composites, the process cycle in each case was then varied to determine if the cycles optimized to minimize residual stresses for isolated fibers in an infinite matrix were applicable to the reduction of residual stresses in conventional multifiber composites. The results of these studies are reported here.
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.10447