Energy-critical Hartree equation with harmonic potential for radial data
In this paper, we consider the defocusing, energy-critical Hartree equation with harmonic potential for the radial data in all dimensions ( n ≥ 5 ) and show the global well-posedness and scattering theory in the space Σ = H 1 ∩ F H 1 . We take advantage of some symmetry of the Hartree nonlinearity t...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2010-03, Vol.72 (6), p.2821-2840 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the defocusing, energy-critical Hartree equation with harmonic potential for the radial data in all dimensions
(
n
≥
5
)
and show the global well-posedness and scattering theory in the space
Σ
=
H
1
∩
F
H
1
. We take advantage of some symmetry of the Hartree nonlinearity to exploit the derivative-like properties of the Galilean operators and obtain the energy control as well. Based on Bourgain and Tao’s approach, we use a localized Morawetz identity to show the global well-posedness. A key decay estimate comes from the linear part of the energy rather than the nonlinear part, which finally helps us to complete the scattering theory. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2009.11.026 |