Non-Hermitian spectra and Anderson localization

The spectrum of exponents of the transfer matrix provides the localization lengths of Anderson's model for a particle in a lattice with disordered potential. I show that a duality identity for determinants and Jensen's identity for subharmonic functions give a formula for the spectrum in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2009-07, Vol.42 (26), p.265204-265204 (15)
1. Verfasser: Molinari, Luca G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spectrum of exponents of the transfer matrix provides the localization lengths of Anderson's model for a particle in a lattice with disordered potential. I show that a duality identity for determinants and Jensen's identity for subharmonic functions give a formula for the spectrum in terms of eigenvalues of the Hamiltonian with non-Hermitian boundary conditions. The formula is exact; it involves an average over a Bloch phase, rather than disorder. A preliminary investigation into non-Hermitian spectra of Anderson's model in D = 1, 2 and into the smallest exponent is presented.
ISSN:1751-8121
1751-8113
1751-8121
DOI:10.1088/1751-8113/42/26/265204