Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping
We consider two types of equations on a cylindrical domain Ω × (0, ∞), where Ω is a bounded domain in RN, N ≥ 2. The first type is a semilinear damped wave equation, in which the unbounded direction of Ω × (0, ∞) is reserved for time t. The second type is an elliptic equation with a singled-out unbo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2003-10, Vol.133 (5), p.1137-1153 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider two types of equations on a cylindrical domain Ω × (0, ∞), where Ω is a bounded domain in RN, N ≥ 2. The first type is a semilinear damped wave equation, in which the unbounded direction of Ω × (0, ∞) is reserved for time t. The second type is an elliptic equation with a singled-out unbounded variable t. In both cases, we consider solutions that are defined and bounded on Ω × (0, ∞) and satisfy a Dirichlet boundary condition on ∂Ω × (0, ∞). We show that, for some nonlinearities, the equations have bounded solutions that do not stabilize to any single function φ: Ω → R, as t → ∞; rather, they approach a continuum of such functions. This happens despite the presence of damping in the equation that forces the t derivative of bounded solutions to converge to 0 as t → ∞. Our results contrast with known stabilization properties of solutions of such equations in the case N = 1. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210500002845 |