Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping

We consider two types of equations on a cylindrical domain Ω × (0, ∞), where Ω is a bounded domain in RN, N ≥ 2. The first type is a semilinear damped wave equation, in which the unbounded direction of Ω × (0, ∞) is reserved for time t. The second type is an elliptic equation with a singled-out unbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2003-10, Vol.133 (5), p.1137-1153
Hauptverfasser: Jendoubi, M. A., Poláčik, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider two types of equations on a cylindrical domain Ω × (0, ∞), where Ω is a bounded domain in RN, N ≥ 2. The first type is a semilinear damped wave equation, in which the unbounded direction of Ω × (0, ∞) is reserved for time t. The second type is an elliptic equation with a singled-out unbounded variable t. In both cases, we consider solutions that are defined and bounded on Ω × (0, ∞) and satisfy a Dirichlet boundary condition on ∂Ω × (0, ∞). We show that, for some nonlinearities, the equations have bounded solutions that do not stabilize to any single function φ: Ω → R, as t → ∞; rather, they approach a continuum of such functions. This happens despite the presence of damping in the equation that forces the t derivative of bounded solutions to converge to 0 as t → ∞. Our results contrast with known stabilization properties of solutions of such equations in the case N = 1.
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210500002845