Inhibited coarsening of a spray-formed and extruded hypereutectic aluminum-silicon alloy in the semisolid state
The microstructural evolution of a spray-formed and extruded hypereutectic aluminum-30 pct silicon-5 pct copper-2 pct magnesium alloy heated into the semisolid state has been investigated. Liquid is formed initially by a quaternary eutectic reaction and then by a ternary melt reaction. These reactio...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2005, Vol.36 (1), p.149-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructural evolution of a spray-formed and extruded hypereutectic aluminum-30 pct silicon-5 pct copper-2 pct magnesium alloy heated into the semisolid state has been investigated. Liquid is formed initially by a quaternary eutectic reaction and then by a ternary melt reaction. These reactions occur relatively quickly. However, the binary Al-Si eutectic melt reaction takes a significant time-around several hours depending on the temperature. The coarsening rate constants (K) for the growth of the silicon particles are approximately three to four orders of magnitude lower than those for the majority of metal spray-formed alloys. This may be associated with difficulties in addition or removal of atoms from the low index silicon facets. Where growth does occur, agglomeration of silicon particles may play a large role, especially at higher liquid contents. Electron backscatter diffraction (EBSD) gives evidence of agglomeration, and furthermore shows that high-angle silicon-silicon boundaries are not wetted with liquid. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-005-0147-7 |