A unified approach to the Myerson value and the position value
We reconsider the Myerson value and the position value for communication situations. In case the underlying game is a unanimity game, we show that each of these values can be computed using the inclusion--exclusion principle. Linearity of both values permits us to calculate them without needing the...
Gespeichert in:
Veröffentlicht in: | Theory and decision 2004-02, Vol.56 (1-2), p.63-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We reconsider the Myerson value and the position value for communication situations. In case the underlying game is a unanimity game, we show that each of these values can be computed using the inclusion--exclusion principle. Linearity of both values permits us to calculate them without needing the dividends of the induced games (graph-restricted game and link game). The expression of these dividends is only derived in the existing literature for special communication situations. Moreover, the associated inclusion--exclusion decomposability property depends on what we have called the graph allocation rule. This rule is the relative degree (relative indicator) for the position value (Myerson value). [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0040-5833 1573-7187 |
DOI: | 10.1007/s11238-004-5636-4 |