Indices for covariance mis-specification in longitudinal data analysis with no missing responses and with MAR drop-outs

Mis-specification of the covariance structure in longitudinal data can result in loss of regression estimation efficiency and in misleading influence diagnostics. Therefore, a rule-of-thumb, even one that is rough, for detecting covariance mis-specification would prove valuable to data analysts. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2010-04, Vol.54 (4), p.806-815
Hauptverfasser: Hines, R.J. O’Hara, Hines, W.G.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mis-specification of the covariance structure in longitudinal data can result in loss of regression estimation efficiency and in misleading influence diagnostics. Therefore, a rule-of-thumb, even one that is rough, for detecting covariance mis-specification would prove valuable to data analysts. In this paper, we examine two indices for detecting the mis-specification of the covariance structure of longitudinal normal, Poisson or binary responses. Our work shows that the suggested indices prove to be worthwhile when there are no missing time observations; they, however, should be used with caution when there are MAR drop-outs.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2009.11.001