Metric characterizations of Tikhonov well-posedness in value

In this paper, we discuss and give metric characterizations of Tikhonov well-posedness in value for Nash equilibria. Roughly speaking, Tikhonov well-posedness of a problem means that approximate solutions converge to the true solution when the degree of approximation goes to zero. If we add to the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 1999-02, Vol.100 (2), p.377-387
Hauptverfasser: MARGIOCCO, M, PATRONE, F, CHICCO, L. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we discuss and give metric characterizations of Tikhonov well-posedness in value for Nash equilibria. Roughly speaking, Tikhonov well-posedness of a problem means that approximate solutions converge to the true solution when the degree of approximation goes to zero. If we add to the condition of ∈-equilibrium that of ∈-closeness in value to some Nash equilibrium, we obtain Tikhonov well-posedness in value, which we have defined in a previous paper. This generalization of Tikhonov well-posedness has the remarkable property of ordinality; namely, it is preserved under monotonic transformations of the payoffs. We show that a metric characterization of Tikhonov well-posedness in value is not possible unless the set of Nash equilibria is compact and nonempty.
ISSN:0022-3239
1573-2878
DOI:10.1023/a:1021738420722