Measuring sorption of hydrophilic organic compounds in soils by an unsaturated transient flow method

Determination of sorption of hydrophilic, weakly sorbing organic compounds in soil by conventional batch methods using a slurried suspension is often prone to considerable errors because small changes in the solution concentration on equilibration must be accurately determined. This difficulty is ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 2005-05, Vol.34 (3), p.1045-1054
Hauptverfasser: Ahmad, R, Katou, H, Kookana, R.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determination of sorption of hydrophilic, weakly sorbing organic compounds in soil by conventional batch methods using a slurried suspension is often prone to considerable errors because small changes in the solution concentration on equilibration must be accurately determined. This difficulty is exacerbated for compounds susceptible to degradation, which also decreases the solution concentration. The objective of this study was to determine sorption of hydrophilic pesticides by applying an unsaturated transient flow method, which enables determination of sorption at sufficiently small solution to soil ratios. The method makes use of piston-like displacement of the antecedent solution in equilibrium with sorbed phase when pesticide-free water is infiltrated into a soil column spiked with a pesticide. Pesticide sorption and the solution concentration are inferred from a plot of total pesticide content per unit mass of soil vs. water content in a region where the antecedent solution is accumulated. Thus, extraction of solution from relative dry soil is unnecessary. We tested this method for two hydrophilic pesticides, monocrotophos [dimethyl (E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and dichlorvos (2,2-dichlorovinyl dimethyl phosphate). The sorption coefficient, K(d), obtained for monocrotophos was slightly lower than that by batch method (K(d) = 0.10 vs. 0.19 L kg(-1)), whereas for dichlorvos, a compound highly susceptible to degradation, the unsaturated flow method yielded a much smaller K(d) (0.19 vs. 3.22 L kg(-1)). The K(d) values for both compounds were consistent with the observed retardation in the pesticide displacement in the columns. The proposed method is more representative of field conditions and particularly suitable for weakly sorbing organic compounds in soils.
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2003.0423