Modelling the Work Hardening Behaviour of AlMgMn Alloys

A recent work hardening model developed by Nes and co-workers at NTNU, Trondheim provides a unified theory for warm and cold stress-strain behaviour which in principle accounts for alloy aspects such as effect of dispersoids (size and number density) and solute content, including dynamic strain agin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2010-01, Vol.638-642, p.285-290
Hauptverfasser: Holmedal, Bjørn, Abtahi, Shahriar, Furu, Trond, Friis, Jesper, Marthinsen, Knut, Nes, Erik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recent work hardening model developed by Nes and co-workers at NTNU, Trondheim provides a unified theory for warm and cold stress-strain behaviour which in principle accounts for alloy aspects such as effect of dispersoids (size and number density) and solute content, including dynamic strain aging for Mg containing aluminium alloys. In the present paper the applicability and predictive power of the model are tested for multicomponent alloys to account for the combined effect of different solute elements in solid solution and dispersoids, with a special focus on hot deformation of a range of Al-Mg-Mn alloys. It is demonstrated that the model, without any re-tuning, only accounting for the variations in alloy chemistry and deformation conditions is capable of predicting the stress-strain for a range of compositions, strain rates and temperatures.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.638-642.285