Treatment of Groundwater Contaminated with PAHs, Gasoline Hydrocarbons, and Methyl tert-butyl Ether in a Laboratory Biomass-Retaining Bioreactor
In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were naphthalene, methyl-naphthalene, acen...
Gespeichert in:
Veröffentlicht in: | Biodegradation (Dordrecht) 2006-02, Vol.17 (1), p.57-69 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were naphthalene, methyl-naphthalene, acenaphthene, acenaphthylene, and carbazole. The gasoline hydrocarbons included benzene, toluene, ethyl benzene, and p-xylene (BTEX). Two porous pot reactors were operated for a period of 10 months under the same influent contaminant concentrations. The contaminated groundwater was introduced into the reactors at a flow rate of 4 and 9 l/day, resulting in a hydraulic retention time (HRT) of 32 and 15 h, respectively. In both reactors, high removal efficiencies were achieved for the PAHs (>99%), BTEX and MtBE (>99.7%). All the PAHs of interest and the four BTEX compounds were detected at concentrations less than 1 mug/l throughout the study duration. Effluent MtBE from both reactors was observed at higher levels; nevertheless, its concentration was lower than the 5 mug/l Drinking Water Advisory for MtBE implemented in California. |
---|---|
ISSN: | 0923-9820 1572-9729 |
DOI: | 10.1007/s10532-005-3049-x |