Globally convergent variable metric method for nonconvex nondifferentiable unconstrained minimization
A special variable metric method is given for finding the stationary points of locally Lipschitz continuous functions which are not necessarily convex or differentiable. Time consuming quadratic programming subproblems do not need to be solved. Global convergence of the method is established. Some e...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2001-11, Vol.111 (2), p.407-430 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A special variable metric method is given for finding the stationary points of locally Lipschitz continuous functions which are not necessarily convex or differentiable. Time consuming quadratic programming subproblems do not need to be solved. Global convergence of the method is established. Some encouraging numerical experience is reported. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1023/a:1011990503369 |