Fertilizer source effect on ground and surface water quality in drainage from turfgrass

Nutrients in surface and ground water can affect human and aquatic organisms that rely on water for consumption and habitat. A mass-balance field study was conducted over two years (July 2000-May 2001) to determine the effect of nutrient source on turfgrass runoff and leachate. Treatments were arran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 2004-03, Vol.33 (2), p.645-655
Hauptverfasser: Easton, Z.M, Petrovic, A.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nutrients in surface and ground water can affect human and aquatic organisms that rely on water for consumption and habitat. A mass-balance field study was conducted over two years (July 2000-May 2001) to determine the effect of nutrient source on turfgrass runoff and leachate. Treatments were arranged in an incomplete randomized block design on a slope of 7 to 9% of Arkport sandy loam (coarse-loamy, mixed, active, mesic Lamellic Hapludalf) and seeded with Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.). Three natural organic (dairy and swine compost and a biosolid) and two synthetic organic nutrient sources (readily available urea and controlled-release N source sulfur-coated urea) were applied at rates of 50 and 100 kg N ha(-1) per application (200 kg ha(-1) yr(-1)). Runoff water collected from 33 storms and composite monthly leachate samples collected with ion exchange resins were analyzed for nitrate (NO3(-)-N), phosphate (PO4(3-)-P), and ammonium (NH4(+)-N). Nutrient concentrations and losses in both runoff and leachate were highest for the 20-wk period following turfgrass seeding. The NO3(-)-N and NH4(+)-N losses declined significantly once turfgrass cover was established, but PO4(3-)-P levels increased in Year 2. Turf's ability to reduce nutrient runoff and leachate was related to overall plant growth and shoot density. The use of natural organics resulted in greater P loss on a percent applied P basis, while the more soluble synthetic organics resulted in greater N loss.
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2004.6450