Finite element simulation and experimental investigation of forming micro-gear with Zr–Cu–Ni–Al bulk metallic glass
Bulk metallic glasses exhibit some unique physical properties as compared to their corresponding crystalline alloys. Due to the superplasticity by behaving like a Newtonian fluid in their supercooled liquid region, the bulk metallic glasses can be used to make high strength microparts by net-shape f...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2010-03, Vol.210 (4), p.684-688 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bulk metallic glasses exhibit some unique physical properties as compared to their corresponding crystalline alloys. Due to the superplasticity by behaving like a Newtonian fluid in their supercooled liquid region, the bulk metallic glasses can be used to make high strength microparts by net-shape forming. In this paper, the compressive tests of Zr–Cu–Ni–Al metallic glass are performed with different strain rates at a temperature of 683
K. According to the experimental results, the forming evolution of a metallic glass micro-gear is simulated using a finite element simulation software DEFORM 3D, and the forming load is predicted at different processing parameters. Meanwhile, the filling stages of bulk metallic glass in the micro-gear mold cavity are investigated by finite element simulation and experiment. The predicted workpiece geometry shows good agreement with experimental result. The forming experiments for micro-gear of Zr–Cu–Ni–Al metallic glass are carried out by hot embossing process, and the amorphous micro-gears are obtained successfully. It is found that the finite element simulation results are in reasonable agreement with the experimental observation. |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/j.jmatprotec.2009.12.005 |