Foundations of swarm robotic chemical plume tracing from a fluid dynamics perspective

Purpose - In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The purpose of this paper is to place this task, called chemical plume tracing (CPT), in the context of fluid dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent computing and cybernetics 2009-11, Vol.2 (4), p.745-785
Hauptverfasser: Spears, Diana F., Thayer, David R., Zarzhitsky, Dimitri V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose - In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The purpose of this paper is to place this task, called chemical plume tracing (CPT), in the context of fluid dynamics.Design methodology approach - This paper provides a foundation for CPT based on the physics of fluid dynamics. The theoretical approach is founded upon source localization using the divergence theorem of vector calculus, and the fundamental underlying notion of the divergence of the chemical mass flux. A CPT algorithm called fluxotaxis is presented that follows the gradient of this mass flux to locate a chemical source emitter.Findings - Theoretical results are presented confirming that fluxotaxis will guide a robot swarm toward chemical sources, and away from misleading chemical sinks. Complementary empirical results demonstrate that in simulation, a swarm of fluxotaxis-guided mobile robots rapidly converges on a source emitter despite obstacles, realistic vehicle constraints, and flow regimes ranging from laminar to turbulent. Fluxotaxis outperforms the two leading competitors, and the theoretical results are confirmed experimentally. Furthermore, initial experiments on real robots show promise for CPT in relatively uncontrolled indoor environments.Practical implications - A physics-based approach is shown to be a viable alternative to existing mainly biomimetic approaches to CPT. It has the advantage of being analyzable using standard physics analysis methods.Originality value - The fluxotaxis algorithm for CPT is shown to be "correct" in the sense that it is guaranteed to point toward a true source emitter and not be fooled by fluid sinks. It is experimentally (in simulation), and in one case also theoretically, shown to be superior to its leading competitors at finding a source emitter in a wide variety of challenging realistic environments.
ISSN:1756-378X
1756-3798
DOI:10.1108/17563780911005863