Effect of vane-rotor interaction on the unsteady flowfield downstream of a transonic high pressure turbine

Abstract This paper analyses the effect of the stator-rotor interference on the stage exit flow field of a transonic turbine operated under engine representative conditions in the von Karman Institute (VKI) compression tube facility. The test programme comprises three pressure ratios and two Reynold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2005-09, Vol.219 (6), p.431-442
Hauptverfasser: Dénos, R, Paniagua, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper analyses the effect of the stator-rotor interference on the stage exit flow field of a transonic turbine operated under engine representative conditions in the von Karman Institute (VKI) compression tube facility. The test programme comprises three pressure ratios and two Reynolds numbers. The time-averaged radial distributions of total pressure and temperature downstream of the rotor are affected by the hub passage vortices and the interaction between the tip passage vortex and the rotor tip leakage vortex. The azimuthal distributions exhibit significant non-uniformities with a periodicity of one vane pitch. The amplitude of this non-uniformity is very sensitive to the pressure ratio. A simple model shows that, contrary to the common belief, the transport of the vane wake and secondary flows across the rotor is not enough to explain the magnitude of the variations. The pitch-wise vane exit static pressure distribution, which is significantly distorted owing to the transonic regime of the vane, should be taken into account. The amplitude of the time-resolved fluctuations of pressure and temperature, which are due to rotor blade passing events, also varies significantly depending on the probe location in a vane pitch. The measured time-accurate rotor relative inlet total pressure suggests that the rotor relative exit undergoes periodic excursions in the transonic regime.
ISSN:0957-6509
2041-2967
DOI:10.1243/095765005X31180