Damage sensitivity of axially loaded stringer-stiffened curved CFRP panels

A fuselage representative carbon fibre-reinforced multi-stiffener panel is analysed under compressive loading. An intact and pre-damaged configuration is loaded into the postbuckling region and further on until collapse occurs. An analysis tool is applied that includes an approach for predicting int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2010-02, Vol.70 (2), p.240-248
Hauptverfasser: Lauterbach, S., Orifici, A.C., Wagner, W., Balzani, C., Abramovich, H., Thomson, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fuselage representative carbon fibre-reinforced multi-stiffener panel is analysed under compressive loading. An intact and pre-damaged configuration is loaded into the postbuckling region and further on until collapse occurs. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and degradation models for capturing interlaminar damage growth as well as in-plane damage mechanisms. Analysis of the intact panel configuration predicts collapse due to fibre fracture in the stiffeners close to the panel clamps, which agrees well with the results from experimental testing. The pre-damaged configuration was proposed containing Teflon-coated layers to generate the initial debonds in the skin-stiffener interface. The outcome of the simulation of this configuration shows that crack growth is not predicted to occur, which agrees with the observations of the experiment. A parametric study is conducted to investigate the effect of the skin-stiffener debond parameters such as length, width and location on crack growth and the collapse behaviour of the panel. It is found that the sensitivity of the panel design to the damage parameters is highly dependent on the postbuckling mode shape or displacement pattern, and particularly the extent to which this influences the conditions at the crack front. More broadly, the analysis tool is shown to be capable of capturing the critical damage mechanisms leading to structural collapse of stiffened composite structures in the postbuckling region.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2009.10.013