Creep deformation characteristics of tin and tin-based electronic solder alloys
Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2005, Vol.36 (1), p.99-105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 36 |
creator | MATHEW, M. D YANG, H MOVVA, S MURTY, K. L |
description | Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n = 7.6, 5.0, and 5.0) and activation energy (Q^sub c^ = 60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Q^sub c^ values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11661-005-0142-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743148357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743148357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-25139f44c159cc1b46f984505b9baaf11575036f9d669596c23e922748bff26d3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKs_wN0gqKtobp6TpRRfUOhG1yGTSXDKdFKT6aL99aa0ILhwdS6X75zL5SB0DeQBCFGPGUBKwIQITIBTvDtBExCcYdCcnJaZKIaFpOwcXeS8JISAZnKCFrPk_bpqfYhpZccuDpX7ssm60acuj53LVQzV2A2VHdq94sZm31a-925McehclWPf-lTZvo_bfInOgu2zvzrqFH2-PH_M3vB88fo-e5pjxxmMmApgOnDuQGjnoOEy6JoLIhrdWBsAhBKElWUrpRZaOsq8plTxugmBypZN0f0hd53i98bn0ay67Hzf28HHTTaqnOE1E6qQd_-StBZE1ZoV8OYPuIybNJQvDAWmqKipKBAcIJdizskHs07dyqatAWL2TZhDE6Y0YfZNmF3x3B6DbXa2D8kOrsu_RimACqnYD8Jih40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213725825</pqid></control><display><type>article</type><title>Creep deformation characteristics of tin and tin-based electronic solder alloys</title><source>Springer Nature - Complete Springer Journals</source><creator>MATHEW, M. D ; YANG, H ; MOVVA, S ; MURTY, K. L</creator><creatorcontrib>MATHEW, M. D ; YANG, H ; MOVVA, S ; MURTY, K. L</creatorcontrib><description>Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n = 7.6, 5.0, and 5.0) and activation energy (Q^sub c^ = 60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Q^sub c^ values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-005-0142-z</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Alloys ; Applied sciences ; Brazing. Soldering ; Creep ; Creep rupture strength ; Deformation ; Exact sciences and technology ; Joining, thermal cutting: metallurgical aspects ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallurgy ; Metals. Metallurgy ; Strain rate ; Tin</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2005, Vol.36 (1), p.99-105</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jan 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-25139f44c159cc1b46f984505b9baaf11575036f9d669596c23e922748bff26d3</citedby><cites>FETCH-LOGICAL-c431t-25139f44c159cc1b46f984505b9baaf11575036f9d669596c23e922748bff26d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16512567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MATHEW, M. D</creatorcontrib><creatorcontrib>YANG, H</creatorcontrib><creatorcontrib>MOVVA, S</creatorcontrib><creatorcontrib>MURTY, K. L</creatorcontrib><title>Creep deformation characteristics of tin and tin-based electronic solder alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n = 7.6, 5.0, and 5.0) and activation energy (Q^sub c^ = 60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Q^sub c^ values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays. [PUBLICATION ABSTRACT]</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>Creep</subject><subject>Creep rupture strength</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Strain rate</subject><subject>Tin</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLAzEUhYMoWKs_wN0gqKtobp6TpRRfUOhG1yGTSXDKdFKT6aL99aa0ILhwdS6X75zL5SB0DeQBCFGPGUBKwIQITIBTvDtBExCcYdCcnJaZKIaFpOwcXeS8JISAZnKCFrPk_bpqfYhpZccuDpX7ssm60acuj53LVQzV2A2VHdq94sZm31a-925McehclWPf-lTZvo_bfInOgu2zvzrqFH2-PH_M3vB88fo-e5pjxxmMmApgOnDuQGjnoOEy6JoLIhrdWBsAhBKElWUrpRZaOsq8plTxugmBypZN0f0hd53i98bn0ay67Hzf28HHTTaqnOE1E6qQd_-StBZE1ZoV8OYPuIybNJQvDAWmqKipKBAcIJdizskHs07dyqatAWL2TZhDE6Y0YfZNmF3x3B6DbXa2D8kOrsu_RimACqnYD8Jih40</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>MATHEW, M. D</creator><creator>YANG, H</creator><creator>MOVVA, S</creator><creator>MURTY, K. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>2005</creationdate><title>Creep deformation characteristics of tin and tin-based electronic solder alloys</title><author>MATHEW, M. D ; YANG, H ; MOVVA, S ; MURTY, K. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-25139f44c159cc1b46f984505b9baaf11575036f9d669596c23e922748bff26d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>Creep</topic><topic>Creep rupture strength</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Strain rate</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MATHEW, M. D</creatorcontrib><creatorcontrib>YANG, H</creatorcontrib><creatorcontrib>MOVVA, S</creatorcontrib><creatorcontrib>MURTY, K. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MATHEW, M. D</au><au>YANG, H</au><au>MOVVA, S</au><au>MURTY, K. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep deformation characteristics of tin and tin-based electronic solder alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2005</date><risdate>2005</risdate><volume>36</volume><issue>1</issue><spage>99</spage><epage>105</epage><pages>99-105</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n = 7.6, 5.0, and 5.0) and activation energy (Q^sub c^ = 60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Q^sub c^ values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-005-0142-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2005, Vol.36 (1), p.99-105 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_743148357 |
source | Springer Nature - Complete Springer Journals |
subjects | Alloys Applied sciences Brazing. Soldering Creep Creep rupture strength Deformation Exact sciences and technology Joining, thermal cutting: metallurgical aspects Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallurgy Metals. Metallurgy Strain rate Tin |
title | Creep deformation characteristics of tin and tin-based electronic solder alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20deformation%20characteristics%20of%20tin%20and%20tin-based%20electronic%20solder%20alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=MATHEW,%20M.%20D&rft.date=2005&rft.volume=36&rft.issue=1&rft.spage=99&rft.epage=105&rft.pages=99-105&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-005-0142-z&rft_dat=%3Cproquest_cross%3E743148357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213725825&rft_id=info:pmid/&rfr_iscdi=true |