Creep deformation characteristics of tin and tin-based electronic solder alloys
Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2005, Vol.36 (1), p.99-105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Creep deformation characteristics of pure tin, and Sn-3.5Ag and Sn-5Sb electronic solder alloys, have been studied at various temperatures between ambient and 473 K (homologous temperature 0.58 to 0.85). Power-law relationships between strain rate and stress were observed at most of the temperatures. The stress exponent (n = 7.6, 5.0, and 5.0) and activation energy (Q^sub c^ = 60.3, 60.7, and 44.7 kJ/mol) values were obtained in the case of tin, Sn-3.5Ag, and Sn-5Sb respectively. Based on n and Q^sub c^ values, it is suggested that the rate controlling creep-deformation mechanism is dislocation climb controlled by lattice diffusion in pure tin and Sn-3.5Ag alloy, and viscous glide controlled by pipe diffusion in Sn-5Sb alloy. The results on Sn-3.5Ag bulk material are compared with the initial results on solder bump arrays. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-005-0142-z |