Comparison of Structure and Properties of Hard Coatings on Commercial Tool Materials Manufactured with the Pressureless Forming Method or Laser Treatment

The goal of the work is fabrication coatings with the pressureless forming method or laser treatment retaining the relatively high ductility of the coated tool's core. The paper presents selection of the binder portion and type, and also of the metallic and carbides powders (WC) being the const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2010-01, Vol.638-642, p.1830-1835
Hauptverfasser: Dobrzański, Leszek Adam, Matula, Grzegorz, Bonek, Mirosław
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of the work is fabrication coatings with the pressureless forming method or laser treatment retaining the relatively high ductility of the coated tool's core. The paper presents selection of the binder portion and type, and also of the metallic and carbides powders (WC) being the constituents of the polymer-powder slurry which was applied onto the prepared surfaces of the test pieces from the conventional HS6-5-2 high speed steel. This materials was compared with the same conventional HS6-5-2 high speed steel heat-treatable steel after laser treatment conditions and alloying additions contained in WC. Investigation indicate the influence of the alloying carbides on the structure and properties of the surface layer of investigated steel depending on manufacturing conditions and power implemented laser (HPDL). In the effect of laser alloying with powders of carbides occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. The resistivity to thermal fatique of laser remelted steel is higher than steel after heat treatment. It shows the possibility of applying the worked out technology to manufacturing or regeneration of chosen hot working tools.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.638-642.1830