Closed-Shell Molecules That Ionize More Readily than Cesium
We report a class of molecules with extremely low ionization enthalpies, one member of which has been determined to have a gas-phase ionization energy (onset, 3.51 electron volts) lower than that of the cesium atom (which has the lowest gas-phase ionization energy of the elements) or of any other kn...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2002-12, Vol.298 (5600), p.1971-1974 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a class of molecules with extremely low ionization enthalpies, one member of which has been determined to have a gas-phase ionization energy (onset, 3.51 electron volts) lower than that of the cesium atom (which has the lowest gas-phase ionization energy of the elements) or of any other known closed-shell molecule or neutral transient species reported. The molecules are dimetal complexes with the general formula$M_{2}(hpp)_4$(where M is Cr, Mo, or W, and hpp is the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine), structurally characterized in the solid state, spectroscopically characterized in the gas phase, and modeled with theoretical computations. The low-energy ionization of each molecule corresponds to the removal of an electron from the delta bonding orbital of the quadruple metal-metal bond, and a strong interaction of this orbital with a filled orbital on the hpp ligands largely accounts for the low ionization energies. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1078721 |