Chiral discrimination of monosaccharides using a fluorescent molecular sensor
MEANS of distinguishing between enantiomers of a chiral molecule are of critical importance in many areas of analytical chemistry and biotechnology, particularly in drug design and synthesis. In particular, solution-based sensor systems capable of chiral recognition would be of tremendous pharmaceut...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1995-03, Vol.374 (6520), p.345-347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MEANS of distinguishing between enantiomers of a chiral molecule are of critical importance in many areas of analytical chemistry and biotechnology, particularly in drug design and synthesis. In particular, solution-based sensor systems capable of chiral recognition would be of tremendous pharmaceutical value. Here we report the chiral discrimination of D- and L -monosaccharides using a designed receptor molecule that acts as a sensor by virtue of its fluorescent response to binding of the guest species. Our receptor contains boronic acid groups that bind saccharides by covalent interactions; such receptor systems have been much studied previously
1–6
for complexation of saccharides, and have an advantage over others based on hydrogen-bonding interactions
7–11
, for which polar protic solvents such as water can compete with guest binding. Our molecular sensor also incorporates a fluorescent naphthyl moiety; binding of each enantiomer of the monosaccharides alters the fluorescence intensity to differing degrees, enabling them to be distinguished. These water-soluble molecular sensors might form the basis of a quantitative and selective analytical method for saccharides. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/374345a0 |