A Proteolytic Transmembrane Signaling Pathway and Resistance to β-Lactams in Staphylococci
β-Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to β-lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2001-03, Vol.291 (5510), p.1962-1965 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | β-Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to β-lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which autoactivates, and the repressor, which is inactivated, unblocking gene transcription. Compounds that disrupt this regulatory pathway could restore the activity of β-lactam antibiotics against drug-resistant strains of Staphylococci. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1055144 |