Determining the Statistical Significance of Relative Weights

Relative weight analysis is a procedure for estimating the relative importance of correlated predictors in a regression equation. Because the sampling distribution of relative weights is unknown, researchers using relative weight analysis are unable to make judgments regarding the statistical signif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2009-12, Vol.14 (4), p.387-399
Hauptverfasser: Tonidandel, Scott, LeBreton, James M, Johnson, Jeff W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Relative weight analysis is a procedure for estimating the relative importance of correlated predictors in a regression equation. Because the sampling distribution of relative weights is unknown, researchers using relative weight analysis are unable to make judgments regarding the statistical significance of the relative weights. J. W. Johnson (2004) presented a bootstrapping methodology to compute standard errors for relative weights, but this procedure cannot be used to determine whether a relative weight is significantly different from zero. This article presents a bootstrapping procedure that allows one to determine the statistical significance of a relative weight. The authors conducted a Monte Carlo study to explore the Type I error, power, and bias associated with their proposed technique. They illustrate this approach here by applying the procedure to published data.
ISSN:1082-989X
1939-1463
DOI:10.1037/a0017735