Inhibition of sporulation in the water mold Blastocladiella emersonii by antipain

Blastocladiella emersonii express two different types of caseinolytic activities during the process of sporulation. They can be distinguished in vitro on the basis of their sensitivity to antipain. The alkaline protease activity is inhibited by antipain and PMSF, whereas the second enzyme, denoted h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 1978-10, Vol.66 (2), p.470-479
Hauptverfasser: Correa, J.U., Lemos, E.M., Lodi, W.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blastocladiella emersonii express two different types of caseinolytic activities during the process of sporulation. They can be distinguished in vitro on the basis of their sensitivity to antipain. The alkaline protease activity is inhibited by antipain and PMSF, whereas the second enzyme, denoted here as the caseinolytic activity, is not inhibited by antipain but is sensitive to PMSF and concanavalin A. In vivo, antipain blocks sporulation when added to cultures during the first 60 min of sporulation, but if added 90 min after sporulation is induced, it is biologically ineffective. In both cases, antipain enters the cells and decreases the rate of total protein degradation by 60%. The antisporulation effect of antipain cannot be reversed by washing the cells. The ability of cells which have been pretreated with antipain to sporulate can be recovered, but only after a period of growth. These data provide evidence for the critical role of the alkaline protease for a limited period of time during the initial phases of sporulation in Blastocladiella. A hypothesis based on the processing of preformed proteins by the alkaline protease as a key control mechanism for sporulation is presented.
ISSN:0012-1606
1095-564X
DOI:10.1016/0012-1606(78)90252-X