Ultrastructural localization and gradient of activity of alkaline phosphatase activity during rodent odontogenesis

The ultrastructural localization and gradient of activity of alkaline phosphatase were studied with respect to cell differentiation, matrix synthesis, and matrix mineralization in the incisor and molar teeth of 4-day-old Sprague-Dawley rats. The animals were perfused intracardially at room temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcified tissue international 1982-12, Vol.34 (3), p.273-279
Hauptverfasser: Orams, H J, Snibson, K J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ultrastructural localization and gradient of activity of alkaline phosphatase were studied with respect to cell differentiation, matrix synthesis, and matrix mineralization in the incisor and molar teeth of 4-day-old Sprague-Dawley rats. The animals were perfused intracardially at room temperature with 2.5% glutaraldehyde in 0.1M sodium cacodylate (pH 7.4) with 3-4% sucrose. The jaws were dissected, immersion-fixed for 24 h, and the incisor and molar tooth germs removed. These were determined in 10% EDTA in NaOH (pH 7.4) with 7% sucrose. After reactivation of the enzyme with 0.1M MgCl in Tris-maleate buffer (pH 7.4) at 4 degrees C, the medium consisting of 6 ml 3% sodium beta-glycerophosphate, 4 ml 0.2M Tris-HCl buffer (pH 9.2), 3 ml 1.6% MgSO4, 12 ml 0.5% lead citrate (pH congruent to 12), and 2.1 g sucrose. The pH was adjusted to 9.2 with 0.2M HCl, the volume made up to 30 ml, and the solution centrifuged for 10 min at 5000 rpm. Control teeth were incubated in medium minus the substrate. Finally, the specimens were routinely post-fixed and embedded for sectioning and examination with a Philips 300 electron microscopy. A gradient of alkaline phosphatase activity was mapped along the developing teeth in the cells of the stratum intermedium, the proximal borders of the ameloblasts, the early dentine matrix, the predentine-dentine border, matrix vesicles, and the plasma membranes of odontoblasts and subodontoblast cells. The gradient of alkaline phosphatase activity was evident in the forming tooth from the cervical loop to the crown apex and was related to the cellular events, matrix synthesis, and matrix mineralization occurring during odontogenesis.
ISSN:0171-967X
1432-0827
DOI:10.1007/BF02411250