Stabilization of Intramolecular Triple/Single-Strand Structure by Cationic Peptides

For better comprehension of possible physiological roles of triple-helical DNA structures, it is important to understand if the proteins can stabilize intramolecular triplex (H-DNA). One plausible mode of stabilization is through the neutralization of electrostatic repulsion of negatively charged ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1998-09, Vol.37 (37), p.12952-12961
Hauptverfasser: Potaman, Vladimir N, Sinden, Richard R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For better comprehension of possible physiological roles of triple-helical DNA structures, it is important to understand if the proteins can stabilize intramolecular triplex (H-DNA). One plausible mode of stabilization is through the neutralization of electrostatic repulsion of negatively charged phosphates in the three DNA strands by positively charged arginine and lysine residues of a bound protein. To gain an insight into interactions between H-DNA and cationic protein domains, we examined the effect of Lys- and Arg-rich oligopeptides on the B-DNA to H-DNA transition. These oligopeptides as well as another type of polycation, spermine, shifted the equilibrium toward H-DNA. These polycations introduced little change in DNA superhelicity, so that an increase in torsional stress was not responsible for facilitated H-DNA formation. Competing influences of polycations and monovalent cations suggest a significant involvement of electrostatic interactions in H-DNA stabilization. The Arg-rich peptides are more effective in H-DNA stabilization than the Lys-rich ones. However, as inferred from experiments on intermolecular complexes, this is not due to a better stabilization of triple helix or destabilization of double helix. It is possible that Arg-rich peptides interact with the unpaired single strand in H-DNA and stabilize its unpaired conformation.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi972510k