Hyperpolarization-activated inward currents contribute to spontaneous electrical activity and CO2/H+ sensitivity of cultivated neurons of fetal rat medulla

Neurons growing out from cultivated fetal medullary slices that exhibited spontaneous electrical activity after blockade of synaptic transmission were investigated by the patch-clamp technique for their response to decreases in the extracellular pH. Increases in the [H+], induced by increases in pCO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1998-11, Vol.87 (1), p.109-121
Hauptverfasser: WELLNER-KIENITZ, M.-C, SHAMS, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons growing out from cultivated fetal medullary slices that exhibited spontaneous electrical activity after blockade of synaptic transmission were investigated by the patch-clamp technique for their response to decreases in the extracellular pH. Increases in the [H+], induced by increases in pCO2, resulted in a decrease in spike frequency associated with a decrease in the rate of depolarization preceding each action potential. The type of ion channel, contributing to interspike depolarization, and which may therefore be the site of CO2/H+ action, was identified by application of agents that inhibited the hyperpolarization-activated cation, IH, channel (Cs+ and ZD7288). Application of Cs+ and ZD7288 slightly hyperpolarized the cell membrane, decreased the interspike slope and inhibited CO2/H+-induced modulations of spike frequency in one group of CO2-inhibited medullary neurons, suggesting that IH contributes to spontaneous neuronal activity and to CO2/H+-sensitivity. CO2/H+ effects on IH were further confirmed in voltage-clamp experiments. Increasing the bath CO2 from 2% to 9% reduced the IH amplitude, shifted the mean EH from -54 to -60 mV, lengthened the voltage-dependent delay of current activation and increased the time-constants of activation at all potentials studied. It is concluded that depolarizing inward currents through IH channels participate in the gradual ramp-like change in membrane potential which depolarizes the cell up to the threshold of Na+ spike generation. CO2/H+-induced inhibition of IH reduces the contribution of this ion current to the interspike depolarization and accounts for the CO2/H+-induced decrease in spike frequency in one type of CO2/H+-inhibited medullary cells.
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(98)00159-6