Control of yeast cell type by the mating type locus: II. Genetic interactions between MATα and unlinked α-specific STE genes

The alleles of the yeast mating type locus, MATα and MATa, determine the yeast cell types, a,α, and a/α. It has been proposed that the MATα2 product negatively regulates expression of unlinked a-specific genes, and that the MATα1 product positively regulates expression of unlinked α-specific genes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1981-12, Vol.153 (2), p.323-335
Hauptverfasser: Sprague, George F., Rine, Jasper, Herskowitz, Ira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alleles of the yeast mating type locus, MATα and MATa, determine the yeast cell types, a,α, and a/α. It has been proposed that the MATα2 product negatively regulates expression of unlinked a-specific genes, and that the MATα1 product positively regulates expression of unlinked α-specific genes. The behavior of mutants defective in MATα2, which are deficient in mating and in production of α-factor, can thus be attributed to antagonism between a-specific and α-specific functions expressed simultaneously in matα2 − strains. If this view is correct, then elimination by mutation of the specific functions required to mate as α may allow matα2 mutants to mate as a. In order to test this possibility, we examined the interactions between matα2 mutations and various unlinked mutations that cause α cells but not a cells to be mating defective (α-specific STE mutations). Three α-specific mutations ( ste3, ste13 and kex2) were found to be non-allelic. Furthermore, although matα2 mutants mate weakly as a, matα2, ste3 double mutants, but not matα2 ste13 or matα2 kex2 double mutants, mate efficiently as a. The ability of matα2 ste3 strains to mate as a supports the view that matα2 mutants express a-specific mating functions, and suggests that a mating functions are expressed constitutively in MATa cells. The mating behaviour of the matα2 ste3 double mutant is consistent with the proposal that STE3 is positively regulated by the MATα1 product.
ISSN:0022-2836
1089-8638
DOI:10.1016/0022-2836(81)90281-3