Tyrosine Structural Changes Detected during the Photoactivation of Rhodopsin

We present the first Fourier transform infrared (FTIR) analysis of an isotope-labeled eukaryotic membrane protein. A combination of isotope labeling and FTIR difference spectroscopy was used to investigate the possible involvement of tyrosines in the photoactivation of rhodopsin (Rho). Rho → MII dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-09, Vol.273 (37), p.23735-23739
Hauptverfasser: DeLange, Frank, Klaassen, Corné H.W., Wallace-Williams, Stacie E., Bovee-Geurts, Petra H.M., Liu, Xiao-Mei, DeGrip, Willem J., Rothschild, Kenneth J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the first Fourier transform infrared (FTIR) analysis of an isotope-labeled eukaryotic membrane protein. A combination of isotope labeling and FTIR difference spectroscopy was used to investigate the possible involvement of tyrosines in the photoactivation of rhodopsin (Rho). Rho → MII difference spectra were obtained at 10 °C for unlabeled recombinant Rho and isotope-labeledl-[ring-2H4]Tyr-Rho expressed in Spodoptera frugiperda cells grown on a stringent culture medium containing enrichedl-[ring-2H4]Tyr and isolated using a His6 tag. A comparison of these difference spectra revealed reproducible changes in bands that correspond to tyrosine and tyrosinate vibrational modes. A similar pattern of tyrosine/tyrosinate bands has also been observed in the bR → M transition in bacteriorhodopsin, although the sign of the bands is reversed. In bacteriorhodopsin, these bands were assigned to Tyr-185, which along with Pro-186 in the F-helix, may form a hinge that facilitates α-helix movement.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.37.23735