A Phosphatidylinositol 4-Kinase Pleckstrin Homology Domain That Binds Phosphatidylinositol 4-Monophosphate

Pleckstrin homology (PH) domains are found in many proteins involved in signal transduction, including the family of large molecular mass phosphatidylinositol (PI) 4-kinases. Although the exact function of these newly discovered domains is unknown, it is recognized that they may influence enzyme reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-08, Vol.273 (35), p.22761-22767
Hauptverfasser: Stevenson, Jill M., Perera, Imara Y., Boss, Wendy F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pleckstrin homology (PH) domains are found in many proteins involved in signal transduction, including the family of large molecular mass phosphatidylinositol (PI) 4-kinases. Although the exact function of these newly discovered domains is unknown, it is recognized that they may influence enzyme regulation by binding different ligands. In this study, the recombinant PI 4-kinase PH domain was explored for its ability to bind to different phospholipids. First, we isolated partial cDNAs of the >7-kilobase transcripts of PI 4-kinases from carrot (DcPI4Kα) andArabidopsis (AtPI4Kα). The deduced primary sequences were 41% identical and 68% similar to rat and human PI 4-kinases and contained the telltale lipid kinase unique domain, PH domain, and catalytic domain. Antibodies raised against the expressed lipid kinase unique, PH, and catalytic domains identified a polypeptide of 205 kDa in Arabidopsis microsomes and an F-actin-enriched fraction from carrot cells. The 205-kDa immunoaffinity-purified Arabidopsis protein had PI 4-kinase activity. We have used the expressed PH domain to characterize lipid binding properties. The recombinant PH domain selectively bound to phosphatidylinositol 4-monophosphate (PI-4-P), phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2), and phosphatidic acid and did not bind to the 3-phosphoinositides. The PH domain had the highest affinity for PI-4-P, the product of the reaction. Consideration is given to the potential impact that this has on cytoskeletal organization and the PI signaling pathway in cells that have a high PI-4-P/PI-4,5-P2 ratio.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.35.22761