Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents

Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In Vitro 1981-08, Vol.17 (8), p.735-740
Hauptverfasser: Wayne K. Hoffman, Lalley, Peter, Jean De B. Butler, Orloff, Sheldon, Schulman, Joseph D., Mukherjee, Anil B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 8
container_start_page 735
container_title In Vitro
container_volume 17
creator Wayne K. Hoffman
Lalley, Peter
Jean De B. Butler
Orloff, Sheldon
Schulman, Joseph D.
Mukherjee, Anil B.
description Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human X-chromosome were also expressed in two independently derived populations of transferents (A9/GT3 and A9/GT4). We report here the chromosomal and enzymatic composition of human HGPRT-positive clones from each sub population analyzed in detail with alkaline Giemsa-11 staining. All the clones expressed human PGK and HGPRT, but one (A9/GT4C6) lacked human G6PD. In each of four clones examined microscopically, a small piece of presumptive human chromatin was visible in the karyotypes of most cells. The chromatin fragment was free or attached in each cell of an individual clone. When integrated, the human chromosomal fragment in each clone appeared associated with the centromere of the same telocentric A9 chromosome (No. 6 by Q-banding). These data suggest that: (a) substantial human chromosomal fragments can be transferred into recipient cells using the lipochromosome technique; (b) clones from human HGPRT positive A9 transferent subpopulations may or may not possess other human X-linked markers; (c) the stability of lipochromosomally transferred genes varied from clone to clone and stability is generally poor in the absence of continuous selection pressure (e.g., HAT); (d) when multiple X-linked human genes were transferred to mouse cells a cytologically detectable human chromosomal fragment was identified free or attached to a host chromosome; and (e) integration of transferred human chromosomal material into mouse chromosomes may occur at preferential site(s) in the recipient genome.
doi_str_mv 10.1007/BF02628411
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73828791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4292567</jstor_id><sourcerecordid>4292567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-22938da5f9abddde76a2fa04603e6f853834a4a257fd05465ad7fbfcfa252f983</originalsourceid><addsrcrecordid>eNpFkU1P3DAQhq2qFSy0l56p5FMPSKH-iO2kN1jxJS1qJeg5msRjYZTEW9t7oD-G31qvdoHTeOZ5530lDyFfOTvjjJkfF1dMaNHUnH8gC14bVQndtB_JokBZKa3UITlK6YkxybTgB-TA8LYtOwvysvLrMDzGMIUUJqR3aD1ktPQaZ6QPEebkMP6ktxbn7J0fIPswU5gt_R1DD_2I9H6Nwxb5_EyDo6swwOj_7YSlv9lMMNPlawaM9K4kRF8eW5v7DL0f97v58T20BKbP5JODMeGXfT0mf64uH5Y31erX9e3yfFUNkslcCdHKxoJyLfTWWjQahANWayZRu0bJRtZQg1DGWaZqrcAa17vBlZFwbSOPyfed7zqGvxtMuZt8GnAcYcawSZ2RjWhMy4vwdCccYkgpouvW0U8QnzvOuu0xuvdjFPG3veumn9C-Sfe_X_jJjj-lHOIbrkUrlDbyP6RikQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73828791</pqid></control><display><type>article</type><title>Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Wayne K. Hoffman ; Lalley, Peter ; Jean De B. Butler ; Orloff, Sheldon ; Schulman, Joseph D. ; Mukherjee, Anil B.</creator><creatorcontrib>Wayne K. Hoffman ; Lalley, Peter ; Jean De B. Butler ; Orloff, Sheldon ; Schulman, Joseph D. ; Mukherjee, Anil B.</creatorcontrib><description>Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human X-chromosome were also expressed in two independently derived populations of transferents (A9/GT3 and A9/GT4). We report here the chromosomal and enzymatic composition of human HGPRT-positive clones from each sub population analyzed in detail with alkaline Giemsa-11 staining. All the clones expressed human PGK and HGPRT, but one (A9/GT4C6) lacked human G6PD. In each of four clones examined microscopically, a small piece of presumptive human chromatin was visible in the karyotypes of most cells. The chromatin fragment was free or attached in each cell of an individual clone. When integrated, the human chromosomal fragment in each clone appeared associated with the centromere of the same telocentric A9 chromosome (No. 6 by Q-banding). These data suggest that: (a) substantial human chromosomal fragments can be transferred into recipient cells using the lipochromosome technique; (b) clones from human HGPRT positive A9 transferent subpopulations may or may not possess other human X-linked markers; (c) the stability of lipochromosomally transferred genes varied from clone to clone and stability is generally poor in the absence of continuous selection pressure (e.g., HAT); (d) when multiple X-linked human genes were transferred to mouse cells a cytologically detectable human chromosomal fragment was identified free or attached to a host chromosome; and (e) integration of transferred human chromosomal material into mouse chromosomes may occur at preferential site(s) in the recipient genome.</description><identifier>ISSN: 0073-5655</identifier><identifier>EISSN: 1475-2689</identifier><identifier>DOI: 10.1007/BF02628411</identifier><identifier>PMID: 7199026</identifier><language>eng</language><publisher>United States: Tissue Culture Association, Inc</publisher><subject>Animals ; Cell lines ; Centromeres ; Chromatin ; Chromosome Banding ; Chromosomes ; Chromosomes, Human ; Electrophoresis ; Female ; Genes ; Glucosephosphate Dehydrogenase - genetics ; Human chromosomes ; Humans ; Hypoxanthine Phosphoribosyltransferase - genetics ; Karyotyping ; Liposomes - administration &amp; dosage ; Metaphase ; Mice ; Microelectromechanical systems ; Phosphoglycerate Kinase - genetics ; Somatic cells ; Transformation, Genetic ; X Chromosome</subject><ispartof>In Vitro, 1981-08, Vol.17 (8), p.735-740</ispartof><rights>Copyright 1981 Tissue Culture Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-22938da5f9abddde76a2fa04603e6f853834a4a257fd05465ad7fbfcfa252f983</citedby><cites>FETCH-LOGICAL-c303t-22938da5f9abddde76a2fa04603e6f853834a4a257fd05465ad7fbfcfa252f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4292567$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4292567$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7199026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wayne K. Hoffman</creatorcontrib><creatorcontrib>Lalley, Peter</creatorcontrib><creatorcontrib>Jean De B. Butler</creatorcontrib><creatorcontrib>Orloff, Sheldon</creatorcontrib><creatorcontrib>Schulman, Joseph D.</creatorcontrib><creatorcontrib>Mukherjee, Anil B.</creatorcontrib><title>Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents</title><title>In Vitro</title><addtitle>In Vitro</addtitle><description>Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human X-chromosome were also expressed in two independently derived populations of transferents (A9/GT3 and A9/GT4). We report here the chromosomal and enzymatic composition of human HGPRT-positive clones from each sub population analyzed in detail with alkaline Giemsa-11 staining. All the clones expressed human PGK and HGPRT, but one (A9/GT4C6) lacked human G6PD. In each of four clones examined microscopically, a small piece of presumptive human chromatin was visible in the karyotypes of most cells. The chromatin fragment was free or attached in each cell of an individual clone. When integrated, the human chromosomal fragment in each clone appeared associated with the centromere of the same telocentric A9 chromosome (No. 6 by Q-banding). These data suggest that: (a) substantial human chromosomal fragments can be transferred into recipient cells using the lipochromosome technique; (b) clones from human HGPRT positive A9 transferent subpopulations may or may not possess other human X-linked markers; (c) the stability of lipochromosomally transferred genes varied from clone to clone and stability is generally poor in the absence of continuous selection pressure (e.g., HAT); (d) when multiple X-linked human genes were transferred to mouse cells a cytologically detectable human chromosomal fragment was identified free or attached to a host chromosome; and (e) integration of transferred human chromosomal material into mouse chromosomes may occur at preferential site(s) in the recipient genome.</description><subject>Animals</subject><subject>Cell lines</subject><subject>Centromeres</subject><subject>Chromatin</subject><subject>Chromosome Banding</subject><subject>Chromosomes</subject><subject>Chromosomes, Human</subject><subject>Electrophoresis</subject><subject>Female</subject><subject>Genes</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Human chromosomes</subject><subject>Humans</subject><subject>Hypoxanthine Phosphoribosyltransferase - genetics</subject><subject>Karyotyping</subject><subject>Liposomes - administration &amp; dosage</subject><subject>Metaphase</subject><subject>Mice</subject><subject>Microelectromechanical systems</subject><subject>Phosphoglycerate Kinase - genetics</subject><subject>Somatic cells</subject><subject>Transformation, Genetic</subject><subject>X Chromosome</subject><issn>0073-5655</issn><issn>1475-2689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1P3DAQhq2qFSy0l56p5FMPSKH-iO2kN1jxJS1qJeg5msRjYZTEW9t7oD-G31qvdoHTeOZ5530lDyFfOTvjjJkfF1dMaNHUnH8gC14bVQndtB_JokBZKa3UITlK6YkxybTgB-TA8LYtOwvysvLrMDzGMIUUJqR3aD1ktPQaZ6QPEebkMP6ktxbn7J0fIPswU5gt_R1DD_2I9H6Nwxb5_EyDo6swwOj_7YSlv9lMMNPlawaM9K4kRF8eW5v7DL0f97v58T20BKbP5JODMeGXfT0mf64uH5Y31erX9e3yfFUNkslcCdHKxoJyLfTWWjQahANWayZRu0bJRtZQg1DGWaZqrcAa17vBlZFwbSOPyfed7zqGvxtMuZt8GnAcYcawSZ2RjWhMy4vwdCccYkgpouvW0U8QnzvOuu0xuvdjFPG3veumn9C-Sfe_X_jJjj-lHOIbrkUrlDbyP6RikQs</recordid><startdate>198108</startdate><enddate>198108</enddate><creator>Wayne K. Hoffman</creator><creator>Lalley, Peter</creator><creator>Jean De B. Butler</creator><creator>Orloff, Sheldon</creator><creator>Schulman, Joseph D.</creator><creator>Mukherjee, Anil B.</creator><general>Tissue Culture Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198108</creationdate><title>Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents</title><author>Wayne K. Hoffman ; Lalley, Peter ; Jean De B. Butler ; Orloff, Sheldon ; Schulman, Joseph D. ; Mukherjee, Anil B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-22938da5f9abddde76a2fa04603e6f853834a4a257fd05465ad7fbfcfa252f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Animals</topic><topic>Cell lines</topic><topic>Centromeres</topic><topic>Chromatin</topic><topic>Chromosome Banding</topic><topic>Chromosomes</topic><topic>Chromosomes, Human</topic><topic>Electrophoresis</topic><topic>Female</topic><topic>Genes</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Human chromosomes</topic><topic>Humans</topic><topic>Hypoxanthine Phosphoribosyltransferase - genetics</topic><topic>Karyotyping</topic><topic>Liposomes - administration &amp; dosage</topic><topic>Metaphase</topic><topic>Mice</topic><topic>Microelectromechanical systems</topic><topic>Phosphoglycerate Kinase - genetics</topic><topic>Somatic cells</topic><topic>Transformation, Genetic</topic><topic>X Chromosome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wayne K. Hoffman</creatorcontrib><creatorcontrib>Lalley, Peter</creatorcontrib><creatorcontrib>Jean De B. Butler</creatorcontrib><creatorcontrib>Orloff, Sheldon</creatorcontrib><creatorcontrib>Schulman, Joseph D.</creatorcontrib><creatorcontrib>Mukherjee, Anil B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>In Vitro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wayne K. Hoffman</au><au>Lalley, Peter</au><au>Jean De B. Butler</au><au>Orloff, Sheldon</au><au>Schulman, Joseph D.</au><au>Mukherjee, Anil B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents</atitle><jtitle>In Vitro</jtitle><addtitle>In Vitro</addtitle><date>1981-08</date><risdate>1981</risdate><volume>17</volume><issue>8</issue><spage>735</spage><epage>740</epage><pages>735-740</pages><issn>0073-5655</issn><eissn>1475-2689</eissn><abstract>Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human X-chromosome were also expressed in two independently derived populations of transferents (A9/GT3 and A9/GT4). We report here the chromosomal and enzymatic composition of human HGPRT-positive clones from each sub population analyzed in detail with alkaline Giemsa-11 staining. All the clones expressed human PGK and HGPRT, but one (A9/GT4C6) lacked human G6PD. In each of four clones examined microscopically, a small piece of presumptive human chromatin was visible in the karyotypes of most cells. The chromatin fragment was free or attached in each cell of an individual clone. When integrated, the human chromosomal fragment in each clone appeared associated with the centromere of the same telocentric A9 chromosome (No. 6 by Q-banding). These data suggest that: (a) substantial human chromosomal fragments can be transferred into recipient cells using the lipochromosome technique; (b) clones from human HGPRT positive A9 transferent subpopulations may or may not possess other human X-linked markers; (c) the stability of lipochromosomally transferred genes varied from clone to clone and stability is generally poor in the absence of continuous selection pressure (e.g., HAT); (d) when multiple X-linked human genes were transferred to mouse cells a cytologically detectable human chromosomal fragment was identified free or attached to a host chromosome; and (e) integration of transferred human chromosomal material into mouse chromosomes may occur at preferential site(s) in the recipient genome.</abstract><cop>United States</cop><pub>Tissue Culture Association, Inc</pub><pmid>7199026</pmid><doi>10.1007/BF02628411</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0073-5655
ispartof In Vitro, 1981-08, Vol.17 (8), p.735-740
issn 0073-5655
1475-2689
language eng
recordid cdi_proquest_miscellaneous_73828791
source MEDLINE; SpringerLink Journals; Jstor Complete Legacy
subjects Animals
Cell lines
Centromeres
Chromatin
Chromosome Banding
Chromosomes
Chromosomes, Human
Electrophoresis
Female
Genes
Glucosephosphate Dehydrogenase - genetics
Human chromosomes
Humans
Hypoxanthine Phosphoribosyltransferase - genetics
Karyotyping
Liposomes - administration & dosage
Metaphase
Mice
Microelectromechanical systems
Phosphoglycerate Kinase - genetics
Somatic cells
Transformation, Genetic
X Chromosome
title Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipochromosome%20Mediated%20Gene%20Transfer:%20Identification%20and%20Probable%20Specificity%20of%20Localization%20of%20Human%20Chromosomal%20Material%20and%20Stability%20of%20the%20Transferents&rft.jtitle=In%20Vitro&rft.au=Wayne%20K.%20Hoffman&rft.date=1981-08&rft.volume=17&rft.issue=8&rft.spage=735&rft.epage=740&rft.pages=735-740&rft.issn=0073-5655&rft.eissn=1475-2689&rft_id=info:doi/10.1007/BF02628411&rft_dat=%3Cjstor_proqu%3E4292567%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73828791&rft_id=info:pmid/7199026&rft_jstor_id=4292567&rfr_iscdi=true