Lipochromosome Mediated Gene Transfer: Identification and Probable Specificity of Localization of Human Chromosomal Material and Stability of the Transferents
Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human...
Gespeichert in:
Veröffentlicht in: | In Vitro 1981-08, Vol.17 (8), p.735-740 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using lipochromosomes (phospholipid-entrapped chromosomes) we have transferred the human HGPRT gene into HGPRT deficient mouse cells (A9) with a frequency of approximately 1 × 10-5(Mukherjee et al. Proc. Natl. Acad. Sci. USA 75: 1361-1365; 1978). Two other genes located on the long arm of the human X-chromosome were also expressed in two independently derived populations of transferents (A9/GT3 and A9/GT4). We report here the chromosomal and enzymatic composition of human HGPRT-positive clones from each sub population analyzed in detail with alkaline Giemsa-11 staining. All the clones expressed human PGK and HGPRT, but one (A9/GT4C6) lacked human G6PD. In each of four clones examined microscopically, a small piece of presumptive human chromatin was visible in the karyotypes of most cells. The chromatin fragment was free or attached in each cell of an individual clone. When integrated, the human chromosomal fragment in each clone appeared associated with the centromere of the same telocentric A9 chromosome (No. 6 by Q-banding). These data suggest that: (a) substantial human chromosomal fragments can be transferred into recipient cells using the lipochromosome technique; (b) clones from human HGPRT positive A9 transferent subpopulations may or may not possess other human X-linked markers; (c) the stability of lipochromosomally transferred genes varied from clone to clone and stability is generally poor in the absence of continuous selection pressure (e.g., HAT); (d) when multiple X-linked human genes were transferred to mouse cells a cytologically detectable human chromosomal fragment was identified free or attached to a host chromosome; and (e) integration of transferred human chromosomal material into mouse chromosomes may occur at preferential site(s) in the recipient genome. |
---|---|
ISSN: | 0073-5655 1475-2689 |
DOI: | 10.1007/BF02628411 |