Secondary lens formation from the cornea following implantation of larval tissues between the inner and outer corneas of Xenopus laevis tadpoles

Secondary lens formation from the cornea of larval Xenopus laevis has been used as a measure of the lens-inducing capacities of various larval Xenopus tissues. The experimental design employed involved implantation of selected body tissues between the inner and outer corneas of stage-5O tadpole eyes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 1981-08, Vol.64 (1), p.121-132
Hauptverfasser: Reeve, J G, Wild, A E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secondary lens formation from the cornea of larval Xenopus laevis has been used as a measure of the lens-inducing capacities of various larval Xenopus tissues. The experimental design employed involved implantation of selected body tissues between the inner and outer corneas of stage-5O tadpole eyes, in such a way that the integrity of the inner cornea and eye cup was not disrupted. Implantation of retina, pituitary, limb blastema or limb bud resulted in secondary lens formation from the outer cornea. Such lenses were similar in appearance to stage-5 lens regenerates described by Freeman (1963). No secondary lenses were observed in eyes receiving either heart or hind brain implants or in eyes which underwent corneal separation but which received no implant. It is concluded that the retina is the natural source of a stimulatory factor which initiates and maintains corneal transformation to lens during lens regeneration following lensectomy. Influences emanating from pituitary, limb blastema and limb bud, but apparently not from heart or hind brain, are able to act on cornea in a way similar to the retinal factor. Furthermore, our findings support the contention that in the normal eye, the inner cornea is a barrier to the passage of retinal factor and so maintains the single lens structure of the eye. When this barrier is by-passed by lens-inducing tissue, as in the present experimental design, lens formation from the cornea is able to take place. Electronmicroscopical studies have shown that the inner cornea, in the stage-50 tadpole eye, consists of a dense meshwork of collagen fibrils and a basal layer of cohesive elongated mesenchymal cells well suited for this barrier function.
ISSN:0950-1991
0022-0752
1477-9129
DOI:10.1242/dev.64.1.121