Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences

Molecular genetic data were used to investigate population sizes and ages of Eleutherodactylus (Anura: Leptodactylidae), a species‐rich group of small leaf‐litter frogs endemic to Central America. Population genetic structure and divergence was investigated for four closely related species surveyed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2003-10, Vol.12 (10), p.2525-2540
1. Verfasser: Crawford, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular genetic data were used to investigate population sizes and ages of Eleutherodactylus (Anura: Leptodactylidae), a species‐rich group of small leaf‐litter frogs endemic to Central America. Population genetic structure and divergence was investigated for four closely related species surveyed across nine localities in Costa Rica and Panama. DNA sequence data were collected from a mitochondrial gene (ND2) and a nuclear gene (c‐myc). Phylogenetic analyses yielded concordant results between loci, with reciprocal monophyly of mitochondrial DNA haplotypes for all species and of c‐myc haplotypes for three of the four species. Estimates of genetic differentiation among populations (FST) based upon mitochondrial data were always higher than nuclear‐based FST estimates, even after correcting for the expected fourfold lower effective population size (Ne) of the mitochondrial genome. Comparing within‐population variation and the relative mutation rates of the two genes revealed that the Ne of the mitochondrial genome was 15‐fold lower than the estimate of the nuclear genome based on c‐myc. Nuclear FST estimates were ≈ 0 for the most proximal pairs of populations, but ranged from 0.5 to 1.0 for all other pairs, even within the same nominal species. The nuclear locus yielded estimates of Ne within localities on the order of 105. This value is two to three orders of magnitude larger than any previous Ne estimate from frogs, but is nonetheless consistent with published demographic data. Applying a molecular clock model suggested that morphologically indistinguishable populations within one species may be 107 years old. These results demonstrate that even a geologically young and dynamic region of the tropics can support very old lineages that harbour great levels of genetic diversity within populations. The association of high nucleotide diversity within populations, large divergence between populations, and high species diversity is also discussed in light of neutral community models.
ISSN:0962-1083
1365-294X
DOI:10.1046/j.1365-294X.2003.01910.x