Hemodynamic profile after the Norwood procedure with right ventricle to pulmonary artery conduit

The balance of systemic, pulmonary, and coronary blood flow after the Norwood operation for hypoplastic left heart syndrome (HLHS) is critical to early survival. We hypothesized that a right ventricle to pulmonary artery conduit (instead of a systemic to pulmonary artery shunt) would result in hemod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2003-08, Vol.108 (7), p.782-784
Hauptverfasser: Maher, Kevin O, Pizarro, Christian, Gidding, Samuel S, Januszewska, Katarzyna, Malec, Edward, Norwood, Jr, William I, Murphy, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The balance of systemic, pulmonary, and coronary blood flow after the Norwood operation for hypoplastic left heart syndrome (HLHS) is critical to early survival. We hypothesized that a right ventricle to pulmonary artery conduit (instead of a systemic to pulmonary artery shunt) would result in hemodynamic changes consistent with a more stable balance of systemic, pulmonary, and coronary perfusion. Hemodynamic data were obtained during cardiac catheterization before the hemi-Fontan procedure from 24 patients with HLHS; the first 10 had a Norwood operation with a systemic to pulmonary artery shunt, and the latter 14 had the Norwood operation with a right ventricle to pulmonary artery conduit. Significant differences were present, with the right ventricle to pulmonary artery conduit group having a higher aortic diastolic pressure (55 versus 42 mm Hg), a narrowed systemic pulse pressure (43 versus 64 mm Hg), a lower Qp:Qs (0.92 versus 1.42), a higher coronary perfusion pressure (46 versus 32 mm Hg), and a higher ratio of pulmonary artery diameter to descending aorta diameter (1.51 versus 1.37). We conclude that, in HLHS after the Norwood operation, the right ventricle to pulmonary artery conduit modification produces hemodynamic changes consistent with improved coronary perfusion and a more favorable distribution of systemic, pulmonary, and coronary blood flow.
ISSN:0009-7322
1524-4539
DOI:10.1161/01.CIR.0000087338.09589.21