Growth retardation and skin abnormalities of the Recql4-deficient mouse

Mutations in the Recql4 gene are very likely responsible for a subset of Rothmund–Thomson syndrome (RTS) cases, but until now there has been no animal model to confirm this. Knockout mice in which the Recql4 gene is disrupted at exons 5–8 exhibit embryonic lethality at embryonic day 3.5–6.5. We gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2003-09, Vol.12 (18), p.2293-2299
Hauptverfasser: Hoki, Yuko, Araki, Ryoko, Fujimori, Akira, Ohhata, Tatsuya, Koseki, Haruhiko, Fukumura, Ryutaro, Nakamura, Miki, Takahashi, Hirokazu, Noda, Yuko, Kito, Seiji, Abe, Masumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations in the Recql4 gene are very likely responsible for a subset of Rothmund–Thomson syndrome (RTS) cases, but until now there has been no animal model to confirm this. Knockout mice in which the Recql4 gene is disrupted at exons 5–8 exhibit embryonic lethality at embryonic day 3.5–6.5. We generated a helicase activity-inhibited mouse by deleting exon 13 of Recql4, which is one of the coding exons of the consensus RecQ-helicase domain. This domain is the primary site of mutations that have been identified in RTS patients. The exon 13-deleted Recql4-deficient mice are viable, but exhibit severe growth retardation and abnormalities in several tissues, and embryonic fibroblasts show a defect in cell proliferation. Abnormalities in the Recql4-deficient mice are similar to those in RTS patients, suggesting that defects in the Recql4 gene may indeed be responsible for RTS. We speculate that the loss of Recql4 helicase activity results in the prematurely aged appearance observed in some RecQ helicase diseases.
ISSN:0964-6906
1460-2083
1460-2083
DOI:10.1093/hmg/ddg254