Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder
We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of λ-phage DNA by individual bacteriophage λ exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the l...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2003-08, Vol.301 (5637), p.1235-1238 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of λ-phage DNA by individual bacteriophage λ exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the local base content of the substrate DNA. By relating single-molecule kinetics to the free energies of hydrogen bonding and base stacking, we establish that the melting of a base from the DNA is the rate-limiting step in the catalytic cycle. The catalytic rate also exhibits large fluctuations independent of the sequence, which we attribute to conformational changes of the enzyme-DNA complex. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1084387 |