Ipsilateral distortion product otoacoustic emission (2f1-f2) suppression in children with sensorineural hearing loss
Distortion product otoacoustic emission (DPOAE) ipsilateral suppression has been applied to study cochlear function and maturation in laboratory animals and humans. Although DPOAE suppression appears to be sensitive to regions of specialized cochlear function and to cochlear immaturity, it is not kn...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2003-08, Vol.114 (2), p.919-931 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distortion product otoacoustic emission (DPOAE) ipsilateral suppression has been applied to study cochlear function and maturation in laboratory animals and humans. Although DPOAE suppression appears to be sensitive to regions of specialized cochlear function and to cochlear immaturity, it is not known whether it reflects permanent cochlear damage, i.e., sensorineural hearing loss (SNHL), in a reliable and systematic manner in humans. Eight school-aged children with mild-moderate SNHL and 20 normal-hearing children served as subjects in this study. DPOAE (2f1-f2) suppression data were collected at four f2 frequencies (1500, 3000, 4000, and 6000 Hz) using moderate-level primary tones. Features of the DPOAE iso-suppression tuning curves and suppression growth were analyzed for both subject groups. Results show that DPOAE suppression tuning curves from hearing-impaired subjects can be reliably recorded. DPOAE suppression tuning curves were generally normal in appearance and shape for six out of eight hearing-impaired subjects but showed subtle abnormalities in at least one feature. There was not one single trend or pattern of abnormality that characterized all hearing-impaired subjects. The most prominent patterns of abnormality included: broadened tuning, elevated tip, and downward shift of tip frequency. The unique patterns of atypical DPOAE suppression in subjects with similar audiograms may suggest different patterns of underlying sensory cell damage. This speculation warrants further investigation. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.1587147 |