Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis
To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2003-10, Vol.130 (20), p.4847-4858 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4858 |
---|---|
container_issue | 20 |
container_start_page | 4847 |
container_title | Development (Cambridge) |
container_volume | 130 |
creator | Bunney, Tom D De Boer, Albertus H Levin, Michael |
description | To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the plasma membrane. It has long been thought that FC acts on higher plants only; here, we show that exposing frog embryos to FC during early development specifically results in randomization of the asymmetry of the left-right (LR) axis (heterotaxia). Biochemical and molecular-genetic evidence is presented that 14-3-3-family proteins are an obligate component of Xenopus FC receptors and that perturbation of 14-3-3 protein function results in heterotaxia. The subcellular localization of 14-3-3 mRNAs and proteins reveals novel cytoplasmic destinations, and a left-right asymmetry at the first cell division. Using gain-of-function and loss-of-function experiments, we show that 14-3-3E protein is likely to be an endogenous and extremely early aspect of LR patterning. These data highlight a striking conservation of signaling pathways across kingdoms, suggest common mechanisms of polarity establishment between C. elegans and vertebrate embryos, and uncover a novel entry point into the pathway of left-right asymmetry determination. |
doi_str_mv | 10.1242/dev.00698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73611263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16156780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-28300342270abb3c9a9301ace88da615349d16804c6f192076f7d297a55c68e03</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMoznV04R-QrAQXvearSbOUwVFhwI2uQ5qe9kbapCbplQF_vKn3gktXZ3EenvPxIvSakiNlgr0f4HwkROruCTpQoVSjKdNP0YHoljRUa3qDXuT8gxDCpVLP0U1tc6KUOqDf91v2LjrnA85-Cnb2YcIJzmDnjKloeMPxmmKBCoxbcMXHgG3GFod4hhnnAiuuvRnG0iQ_nQpebSmQwi4atrQXu6wn33sbMCx9eowTBMg-v0TPxjoGXl3rLfp-__Hb3efm4eunL3cfHhonWlYa1vG6uWBMEdv33Glbt6fWQdcNVtKWCz1Q2RHh5Eg1I0qOamBa2bZ1sgPCb9Hbi7ce8nODXMzis4N5tgHilo3iklIm-X9BWqdJ1e3GdxfQpZhzgtGsyS82PRpKzJ6JqZmYv5lU9s1VuvULDP_IawgVOF6AU33fL5_A9D7OcfK55N0Dc1wN5cQwYkQnFP8DnaaXlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16156780</pqid></control><display><type>article</type><title>Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Bunney, Tom D ; De Boer, Albertus H ; Levin, Michael</creator><creatorcontrib>Bunney, Tom D ; De Boer, Albertus H ; Levin, Michael</creatorcontrib><description>To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the plasma membrane. It has long been thought that FC acts on higher plants only; here, we show that exposing frog embryos to FC during early development specifically results in randomization of the asymmetry of the left-right (LR) axis (heterotaxia). Biochemical and molecular-genetic evidence is presented that 14-3-3-family proteins are an obligate component of Xenopus FC receptors and that perturbation of 14-3-3 protein function results in heterotaxia. The subcellular localization of 14-3-3 mRNAs and proteins reveals novel cytoplasmic destinations, and a left-right asymmetry at the first cell division. Using gain-of-function and loss-of-function experiments, we show that 14-3-3E protein is likely to be an endogenous and extremely early aspect of LR patterning. These data highlight a striking conservation of signaling pathways across kingdoms, suggest common mechanisms of polarity establishment between C. elegans and vertebrate embryos, and uncover a novel entry point into the pathway of left-right asymmetry determination.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.00698</identifier><identifier>PMID: 12930777</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>14-3-3 protein ; 14-3-3 Proteins ; Animals ; Anura ; Body Patterning - physiology ; Caenorhabditis elegans ; Embryo, Nonmammalian - physiology ; Fusicoccin ; Glycosides - metabolism ; heterotaxia ; Signal Transduction - physiology ; Transforming Growth Factor beta - metabolism ; Tyrosine 3-Monooxygenase - metabolism ; Xenopus ; Xenopus Proteins</subject><ispartof>Development (Cambridge), 2003-10, Vol.130 (20), p.4847-4858</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-28300342270abb3c9a9301ace88da615349d16804c6f192076f7d297a55c68e03</citedby><cites>FETCH-LOGICAL-c452t-28300342270abb3c9a9301ace88da615349d16804c6f192076f7d297a55c68e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3679,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12930777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bunney, Tom D</creatorcontrib><creatorcontrib>De Boer, Albertus H</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><title>Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the plasma membrane. It has long been thought that FC acts on higher plants only; here, we show that exposing frog embryos to FC during early development specifically results in randomization of the asymmetry of the left-right (LR) axis (heterotaxia). Biochemical and molecular-genetic evidence is presented that 14-3-3-family proteins are an obligate component of Xenopus FC receptors and that perturbation of 14-3-3 protein function results in heterotaxia. The subcellular localization of 14-3-3 mRNAs and proteins reveals novel cytoplasmic destinations, and a left-right asymmetry at the first cell division. Using gain-of-function and loss-of-function experiments, we show that 14-3-3E protein is likely to be an endogenous and extremely early aspect of LR patterning. These data highlight a striking conservation of signaling pathways across kingdoms, suggest common mechanisms of polarity establishment between C. elegans and vertebrate embryos, and uncover a novel entry point into the pathway of left-right asymmetry determination.</description><subject>14-3-3 protein</subject><subject>14-3-3 Proteins</subject><subject>Animals</subject><subject>Anura</subject><subject>Body Patterning - physiology</subject><subject>Caenorhabditis elegans</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Fusicoccin</subject><subject>Glycosides - metabolism</subject><subject>heterotaxia</subject><subject>Signal Transduction - physiology</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Xenopus</subject><subject>Xenopus Proteins</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2L1TAUhoMoznV04R-QrAQXvearSbOUwVFhwI2uQ5qe9kbapCbplQF_vKn3gktXZ3EenvPxIvSakiNlgr0f4HwkROruCTpQoVSjKdNP0YHoljRUa3qDXuT8gxDCpVLP0U1tc6KUOqDf91v2LjrnA85-Cnb2YcIJzmDnjKloeMPxmmKBCoxbcMXHgG3GFod4hhnnAiuuvRnG0iQ_nQpebSmQwi4atrQXu6wn33sbMCx9eowTBMg-v0TPxjoGXl3rLfp-__Hb3efm4eunL3cfHhonWlYa1vG6uWBMEdv33Glbt6fWQdcNVtKWCz1Q2RHh5Eg1I0qOamBa2bZ1sgPCb9Hbi7ce8nODXMzis4N5tgHilo3iklIm-X9BWqdJ1e3GdxfQpZhzgtGsyS82PRpKzJ6JqZmYv5lU9s1VuvULDP_IawgVOF6AU33fL5_A9D7OcfK55N0Dc1wN5cQwYkQnFP8DnaaXlw</recordid><startdate>20031015</startdate><enddate>20031015</enddate><creator>Bunney, Tom D</creator><creator>De Boer, Albertus H</creator><creator>Levin, Michael</creator><general>The Company of Biologists Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20031015</creationdate><title>Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis</title><author>Bunney, Tom D ; De Boer, Albertus H ; Levin, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-28300342270abb3c9a9301ace88da615349d16804c6f192076f7d297a55c68e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>14-3-3 protein</topic><topic>14-3-3 Proteins</topic><topic>Animals</topic><topic>Anura</topic><topic>Body Patterning - physiology</topic><topic>Caenorhabditis elegans</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Fusicoccin</topic><topic>Glycosides - metabolism</topic><topic>heterotaxia</topic><topic>Signal Transduction - physiology</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Xenopus</topic><topic>Xenopus Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bunney, Tom D</creatorcontrib><creatorcontrib>De Boer, Albertus H</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bunney, Tom D</au><au>De Boer, Albertus H</au><au>Levin, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2003-10-15</date><risdate>2003</risdate><volume>130</volume><issue>20</issue><spage>4847</spage><epage>4858</epage><pages>4847-4858</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the plasma membrane. It has long been thought that FC acts on higher plants only; here, we show that exposing frog embryos to FC during early development specifically results in randomization of the asymmetry of the left-right (LR) axis (heterotaxia). Biochemical and molecular-genetic evidence is presented that 14-3-3-family proteins are an obligate component of Xenopus FC receptors and that perturbation of 14-3-3 protein function results in heterotaxia. The subcellular localization of 14-3-3 mRNAs and proteins reveals novel cytoplasmic destinations, and a left-right asymmetry at the first cell division. Using gain-of-function and loss-of-function experiments, we show that 14-3-3E protein is likely to be an endogenous and extremely early aspect of LR patterning. These data highlight a striking conservation of signaling pathways across kingdoms, suggest common mechanisms of polarity establishment between C. elegans and vertebrate embryos, and uncover a novel entry point into the pathway of left-right asymmetry determination.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>12930777</pmid><doi>10.1242/dev.00698</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2003-10, Vol.130 (20), p.4847-4858 |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_proquest_miscellaneous_73611263 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists |
subjects | 14-3-3 protein 14-3-3 Proteins Animals Anura Body Patterning - physiology Caenorhabditis elegans Embryo, Nonmammalian - physiology Fusicoccin Glycosides - metabolism heterotaxia Signal Transduction - physiology Transforming Growth Factor beta - metabolism Tyrosine 3-Monooxygenase - metabolism Xenopus Xenopus Proteins |
title | Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusicoccin%20signaling%20reveals%2014-3-3%20protein%20function%20as%20a%20novel%20step%20in%20left-right%20patterning%20during%20amphibian%20embryogenesis&rft.jtitle=Development%20(Cambridge)&rft.au=Bunney,%20Tom%20D&rft.date=2003-10-15&rft.volume=130&rft.issue=20&rft.spage=4847&rft.epage=4858&rft.pages=4847-4858&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.00698&rft_dat=%3Cproquest_cross%3E16156780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16156780&rft_id=info:pmid/12930777&rfr_iscdi=true |