Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis

To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2003-10, Vol.130 (20), p.4847-4858
Hauptverfasser: Bunney, Tom D, De Boer, Albertus H, Levin, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H + flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H + pumping across the plasma membrane. It has long been thought that FC acts on higher plants only; here, we show that exposing frog embryos to FC during early development specifically results in randomization of the asymmetry of the left-right (LR) axis (heterotaxia). Biochemical and molecular-genetic evidence is presented that 14-3-3-family proteins are an obligate component of Xenopus FC receptors and that perturbation of 14-3-3 protein function results in heterotaxia. The subcellular localization of 14-3-3 mRNAs and proteins reveals novel cytoplasmic destinations, and a left-right asymmetry at the first cell division. Using gain-of-function and loss-of-function experiments, we show that 14-3-3E protein is likely to be an endogenous and extremely early aspect of LR patterning. These data highlight a striking conservation of signaling pathways across kingdoms, suggest common mechanisms of polarity establishment between C. elegans and vertebrate embryos, and uncover a novel entry point into the pathway of left-right asymmetry determination.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.00698